ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 10, 2019
Accepted November 12, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electroless deposition of Ni nanoparticles on micron-sized boron carbide particles: Physicochemical and oxidation properties

Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea 1Agency for Defense Development, Daejeon 34186, Korea 2Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
wgshin@cnu.ac.kr
Korean Journal of Chemical Engineering, March 2020, 37(3), 546-555(10), 10.1007/s11814-019-0431-7
downloadDownload PDF

Abstract

The present work describes the electroless deposition of Ni nanoparticles on micron sized (10 μm) boron carbide particles at room temperature. The weight of the boron carbide particles varied in relation to the other parameters during electroless deposition. A uniform and continuous nanolayer of Ni nanoparticles changed into a discontinuous layer, with irregular distribution and insignificant presence of Ni nanoparticles, as the weight of the boron carbide increased. The EDS measurement, elemental mapping and line scanning profile results showed a decrease in Ni percentage, as the weight of boron carbide increased in the samples. Further, FIB cross-sectional SEM images demonstrated a core-shell like structure of Ni coated boron carbide particle, when the weight of boron carbide was low in the sample. XRD showed the nanocrystalline nature of Ni-particles, and the presence of Ni, B and C elements was confirmed by XPS analysis. When thermogravimetric analysis was conducted in air atmosphere, the boron carbide, Ni nanoparticles and Ni-coated boron carbide samples exhibited oxidation at high temperature accompanied by weight gain. After being coated with Ni nanoparticles, even a small amount of Ni, the oxidation temperature of the boron carbide shifted to a lower temperature, with enhanced exothermic reaction as well as higher weight gain.

References

Dong HY, Zhu XJ, Lu K, J. Mater. Sci., 43(12), 4247 (2008)
Belon R, Antou G, Praseilles N, Maitre A, Gosset D, Ceram. Int., 43, 6631 (2017)
Dawes M, Blackburn S, Greenwood R, Charles S, Ceram. Int., 44, 23208 (2018)
Thevenot F, J. Eur. Ceram. Soc., 6, 205 (1990)
Hou X, Chou KC, J. Alloy. Compd., 573, 182 (2013)
Li YQ, Qiu T, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 444, 184 (2007)
Di Giampaolo AR, Ordofiez JG, Gugliemacci JM, Lira J, Surf. Coat. Technol., 89, 127 (1997)
Ebrahimian-Hosseinabadi M, Azari-Dorcheh K, Moonir Vaghefi SM, Wear, 260, 123 (2006)
Zhu H, Niu Y, Lin C, Huang L, Ji H, Zheng X, Ceram. Int., 39, 101 (2013)
Sudagar J, Lian J, Sha W, J. Alloy. Compd., 571, 183 (2013)
He P, Huang S, Wang H, Huang Z, Hu J, Cheng X, Pan C, Ceram. Int., 40, 16653 (2014)
Pang JN, Jiangn SW, Lin H, Wang ZQ, Ceram. Int., 42, 4491 (2016)
Kilicarslan A, Toptan F, Kerti I, Mater. Lett., 76, 11 (2012)
Zhu X, Dong H, Lu K, Surf. Coat. Technol., 202, 2927 (2008)
Aizenshtein M, Froumin N, Frage N, Engineering, 6, 849 (2014)
Lin Q, Sui R, J. Alloy. Compd., 577, 37 (2013)
Lin Q, Sui R, J. Alloy. Compd., 649, 505 (2015)
Lin Q, Sui R, J. Alloy. Compd., 556, 274 (2013)
Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JL, Carbon, 38, 363 (2000)
Li Q, Fan S, Han W, Sun C, Liang W, Jpn. J. Appl. Phy., 36, L501 (1997)
Uysal M, Karslioglu R, Alp A, Akbulut H, Appl. Surf. Sci., 257(24), 10601 (2011)
Zou GZ, Cao MS, Zhang L, Li JG, Xu H, Chen YJ, Surf. Coat. Technol., 201, 108 (2006)
Kong FZ, Zhang XB, Xiong WQ, Liu F, Huang WZ, Sun YL, Tu JP, Chen XW, Surf. Coat. Technol., 155, 33 (2002)
Shin WG, Calder S, Ugurlu O, Girshick SL, J. Nanopart. Res., 13, 7187 (2011)
Jung HJ, Sohn Y, Sung HG, Hyun HS, Shin WG, Powder Technol., 269, 548 (2015)
Bute A, Jagannath, Kar R, Chopade SS, Desai SS, Deo MN, Rao P, Chand N, Kumar S, Singh K, Patil DS, Sinha S, Mater. Chem. Phys., 182, 62 (2016)
Payne BP, Biesinger MC, McIntyre NS, J. Electr. Spectr. Rel. Phenomena, 175, 55 (2009)
Richardson Y, Blin J, Volle G, Motuzas J, Julbe A, Appl. Catal. A: Gen., 382(2), 220 (2010)
Prieto P, Nistor V, Nouneh K, Oyama M, Abd-Lefdil M, Diaz R, Appl. Surf. Sci., 258(22), 8807 (2012)
Jacobsohn LG, Schulze RK, Maia da Costa MEH, Nastasi M, Surf. Sci., 572, 418 (2004)
Chen R, Su L, Qi J, Shi Q, Shi Y, Liao Z, Lu T, Ceram. Int., 44, 17298 (2018)
Sung J, Shin M, Deshmukh PR, Hyun HS, Sohn Y, Shin WG, J. Alloy. Compd., 767, 924 (2018)
Lee S, Noh K, Lim J, Yoon W, Chin. J. Mech. Eng., 29, 1244 (2016)
Yang YF, Wang HY, Zhao RY, Liang YH, Jiang QC, Int. J. Refract. Met. Hard Mater., 26, 77 (2008)
Rohani P, Kim S, Swihart MT, Adv. Eng. Mater., 6, 150255 (2016)
Kim DW, Kwon GH, Kim KT, J. Korean Powder Metall. Inst., 24, 242 (2017)
Mckee DW, Carbon, 8, 623 (1970)
Liu T, Chen X, Xu H, Han A, Ye M, Pan G, Propellants Explos. Pyrotech., 40, 873 (2015)
Liu T, Chen X, Han AJ, Ye MQ, Zhang ST, KnE Materials Science, 2016, 95 (2016)
Xi J, Liu J, Wang Y, Hu Y, Zhang Y, Zhou J, J. Propulsion Power, 30, 47 (2014)
Levashov EA, Mukasyan AS, Rogachev AS, Shtansky DV, Int. Mater. Rev., 62, 203 (2017)
Yang YF, Wang HY, Liang YH, Zhao RY, Jiang QC, J. Mater. Res., 22, 169 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로