ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 29, 2019
Accepted December 7, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Alum sludge conditioning with ferrous iron/peroxymonosulfate oxidation: Characterization and mechanism

Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China 1State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China 2Department of Building and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
cchen@hit.edu.cn
Korean Journal of Chemical Engineering, April 2020, 37(4), 663-669(7), 10.1007/s11814-019-0457-x
downloadDownload PDF

Abstract

Alum sludge produced by drinking water plants needs to be conditioned and dewatered before final disposal. In this study, a novel ferrous iron/peroxymonosulfate (PMS) oxidation process was employed to enhance alum sludge dewaterability. The effect of oxidative sulfate radicals generated by Fe2+ activated HSO5 - on alum sludge was studied. The results showed that the optimal conditioning conditions for addition of Fe2+ and PMS were 0.5 g/g and 0.1 g/g TSS, respectively. Meanwhile, the capillary suction time (CST) and specific resistance to filtration (SRF) of alum sludge was reduced by 66% and 88%. Also found was that the absolute value of the zeta potential increased and the particle size decreased in alum sludge after Fe2+-PMS conditioning, which indicated that oxidative sulfate radicals destroyed the floc structure of alum sludge and smaller particles were generated. At the same time, the water contained in sludge flocs was released and enhanced sludge dewaterability, while leaching of aluminum ions also characterized decomposition of alum sludge.

References

Sveegaard SG, Keiding K, Christensen ML, Water Res., 46, 4999 (2012)
Neyens E, Baeyens J, Weemaes M, Environ. Eng. Sci., 1, 27 (2002)
Kepp U, Machenbach I, Weisz N, Solheim OE, Water Sci. Technol., 42, 89 (2000)
Wang Q, Fujisaki K, Ohsumi Y, Ogawa HI, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 36, 1361 (2001)
Hung WT, Chang IL, Lin WW, Lee DJ, Environ. Sci. Technol., 30, 2391 (1996)
Deneux-Mustin S, Lartiges BS, Villemin G, Thomas F, Yvon J, Bersillon JL, Snidaro D, Water Res., 35, 3018 (2001)
Ma M, Zhu S, Colloid Polym. Sci., 2-3, 123 (1999)
Neyens E, Baeyens J, Creemers C, J. Hazard. Mater., 97(1-3), 295 (2003)
Erdincler A, Vesilind PA, Water Sci. Technol., 42, 119 (2000)
Liao BQ, Allen DG, Leppard GG, Droppo IG, Liss SN, J. Colloid Interface Sci., 249(2), 372 (2002)
Liu CS, Shih K, Sun CX, Wang F, Sci. Total Environ., 416, 507 (2012)
Neyens E, Baeyens J, J. Hazard. Mater., 98(1-3), 33 (2003)
Neyens E, Baeyens J, Dewil R, De heyder B, J. Hazard. Mater., 106(2-3), 83 (2004)
Buyukkamaci N, Process Biochem., 39(11), 1503 (2004)
Lu MC, Lin CJ, Liao CH, Ting WP, Huang RY, Water Sci. Technol., 44, 327 (2001)
Ren W, Zhou Z, Zhu Y, Jiang L, Wei H, Niu T, Fu P, Qiu Z, Int. Biodeterior. Biodegrad., 104, 384 (2015)
Gu XG, Lu SG, Qiu ZF, Sui Q, Miao ZW, Lin KF, Liu YD, Luo QS, Ind. Eng. Chem. Res., 51(21), 7196 (2012)
Yang SY, Wang P, Yang X, Shan L, Zhang WY, Shao XT, Niu R, J. Hazard. Mater., 179(1-3), 552 (2010)
Fang JY, Shang C, Environ. Sci. Technol., 46, 8976 (2012)
Wang YR, Chu W, Water Res., 45, 3883 (2011)
Wang YR, Chu W, Appl. Catal. B: Environ., 123, 151 (2012)
Anipsitakis GP, Dionysiou DD, Environ. Sci. Technol., 38, 3705 (2004)
Liang C, Lai M, Environ. Eng. Sci., 25, 1071 (2008)
Yu ZY, Wang WH, Song L, Lu LQ, Wang ZY, Jiang XF, Dong CN, Qiu RY, Chem. Eng. J., 234, 475 (2013)
Pagano M, Volpe A, Mascolo G, Lopez A, Locaputo V, Ciannarella R, Chemosphere, 86, 329 (2012)
Neyens E, Baeyens J, Weemaes M, De heyder B, J. Hazard. Mater., 98(1-3), 91 (2003)
Meier M, Vaneldik R, Chang IJ, Mines GA, Wuttke DS, Winkler JR, Gray HB, J. Am. Chem. Soc., 116(4), 1577 (1994)
Mirabel P, Salmon GA, Vinckier C, Zetzsch C, Heterogeneous and liquid-phase processes, Springer Science & Business Media (2012).
Gilbert BC, Stell JK, J. Chem. Soc.-Perkin Trans. 2, 8, 1281 (1990)
Kim J, Zhang TQ, Liu W, Du PH, Dobson JT, Huang CH, Environ. Sci. Technol., 53, 13312 (2019)
Lepentsiotis V, Domagala J, Grgic I, van Eldik R, Muller JG, Burrows CJ, Inorg. Chem., 38(15), 3500 (1999)
Zhang ZM, Edwards JO, Rieger PH, Inorg. Chim. Acta., 221, 25 (1994)
Marsh C, Zhang Z, Edwards JO, Aust. J. Chem., 43, 321 (1990)
Liu J, Yang Q, Wang DB, Li XM, Zhong Y, Li X, Deng YC, Wang LQ, Yi KX, Zeng GM, Bioresour. Technol., 206, 134 (2016)
Zhen GY, Lu XQ, Zhao YC, Chai XL, Niu DJ, Bioresour. Technol., 116, 259 (2012)
Lombi E, Stevens DP, McLaughlin MJ, Environ. Pollut., 158, 2110 (2010)
Panda SK, Matsumoto H, Bot. Rev., 73, 326 (2007)
Xu H, Ding MM, Shen KL, Cui JF, Chen W, Chemosphere, 173, 404 (2017)
Okuda T, Nishijima W, Sugimoto M, Saka N, Nakai S, Tanabe K, Ito J, Takenaka K, Okada M, Water Res., 60, 75 (2014)
Wang QL, Acs Sustain. Chem. Eng., 5, 9630 (2017)
Wang QL, Song K, Hao XD, Wei J, Maite PJ, van Loosdrecht MCM, Zhao HJ, Chemosphere, 201, 25 (2018)
Wang QL, Sun J, Liu ST, Gao L, Zhou X, Wang DB, Song K, Nghiem LD, Water Res., 162, 269 (2019)
Zhou X, Chen H, Gao SH, Han S, Tu R, Wei W, Cai C, Liu P, Jin W, Wang Q, Korean J. Chem. Eng., 34(10), 2672 (2017)
Zhou X, Jin WB, Chen HY, Chen C, Han SF, Tu RJ, Wei W, Gao SH, Xie GJ, Wa QL, Water Sci. Technol., 76, 2427 (2017)
Vesilind PA, J. Water Pollut. Contr. Fed., 60, 215 (1988)
Chen GW, Lin WW, Lee DJ, Water Sci. Technol., 34, 443 (1996)
Vesilind KB, J. Inst. Water Pollut. Contr., 3, 388 (1980)
Tony MA, Zhao YQ, Tayeb AM, J. Environ. Sci.-China, 21, 101 (2009)
Neubauer WK, J. Am. Water Works Ass, 60, 819 (1968)
Westerhoff GP, Daly MP, J. Am. Water Works Ass, 66, 319 (1974)
Westerhoff GP, Daly MP, J. Am. Water Works Ass, 66, 379 (1974)
Abdo M, Ewida KT, Youssef YM, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 28, 1205 (1993)
Zhou X, Jiang GM, Zhang TT, Wang QL, Xie GJ, Yuan ZG, Bioresour. Technol., 192, 817 (2015)
Yang ZL, Gao BY, Yue QY, Chem. Eng. J., 165(1), 122 (2010)
Badr I, Meyerhoff ME, Anal. Chem., 77, 6719 (2005)
Katal R, Pahlavanzadeh H, Desalination, 265(1-3), 199 (2011)
Liu XM, Sheng GP, Luo HW, Zhang F, Yuan SJ, Xu J, Zeng RJ, Wu JG, Yu HQ, Environ. Sci. Technol., 44, 4355 (2010)
Wang N, Zhang WJ, Cao BD, Yang P, Cui FG, Wang DS, Chem. Eng. J., 3503, 660 (2018)
Elliott HA, Dempsey BA, J. Am. Water Works Ass, 83, 126 (1991)
Guan KH, Chen GH, Shang C, Water Res., 39, 3433 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로