ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 29, 2019
Accepted December 7, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Development of an implantable PCL/alginate bilayer scaffold to prevent secondary infections

Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Korea
dhlee@cau.ac.kr
Korean Journal of Chemical Engineering, April 2020, 37(4), 677-687(11), 10.1007/s11814-019-0459-8
downloadDownload PDF

Abstract

Drug-releasing implantable scaffolds have been used for a variety of biomedical applications. Sustained release of drugs, including antibacterial drug release after operation and/or treatment, is becoming more important in medical fields. We developed a biodegradable scaffold using air-jet spinning and solvent casting. The implantable scaffold consists of a core scaffold, made of alginate, and an outer layer of polycaprolactone (PCL), both of which are biomaterials with good biocompatibility and biodegradability. The morphology of the PCL/alginate scaffolds was analyzed by scanning electron microscopy and atomic force microscopy. Fourier-transform infrared spectroscopy was performed to confirm the characteristics of the PCL/alginate scaffold. NIH/3T3 cells were used to determine the cytotoxicity of the PCL/alginate scaffold and its effect on cell proliferation. The rate of drug release could be easily controlled by adjusting the degree of crosslinking of the alginate scaffold, which was confirmed by high-performance liquid chromatography. Optimal conditions were reached when the alginate scaffold was crosslinked using a 10% CaCl2 solution, with the amount of the released drug maintained above the minimum inhibitory concentration for the longest period of time. In summary, the implantable PCL/alginate scaffold system developed in this study has the potential for biomedical applications.

References

Bhattacharyya K, Mukherjee S, Bull. Chem. Soc. Jpn., 91, 447 (2018)
Campana PT, Marletta A, Piovesan E, Francisco KJ, Neto FV, Jr LF, Silva TR, Machado D, Basoli F, Jr ONO, Bull. Chem. Soc. Jpn., 92, 1237 (2019)
Schneider C, Langer R, Loveday D, Hair D, J. Control. Release, 262, 284 (2017)
Langer RS, Peppas NA, Biomaterials, 2, 201 (1981)
Yun YH, Lee BK, Park K, J. Control. Release, 219, 2 (2015)
Malafaya PB, Silva GA, Reis RL, Adv. Drug Deliv. Rev., 59, 207 (2007)
Cohen DL, Malone E, Lipson H, Bonassar LJ, Tissue Eng., 12, 5 (2006)
Choi JI, Kim MS, Chung GY, Shin HS, Biotechnol. Bioprocess Eng., 22, 679 (2018)
Ige OO, Umoru LE, Aribo S, ISRN Mater. Sci., 2012, 1 (2012)
Aderibigbe BA, Buyana B, Pharmaceutics, 10, 42 (2018)
Iqbal HMN, Villalba-R AM, Dhama K, Int. J. Pharm., 13, 864 (2017)
Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S, Polymers, 8, 54 (2016)
Santoro M, Shah SR, Walker JL, Mikos AG, Adv. Drug Deliv. Rev., 107, 206 (2016)
Mehrasa M, Asadollahi MA, Ghaedi K, Salehi H, Arpanaei A, Int. J. Biol. Macromol., 79, 687 (2015)
Xu W, Shen R, Yan Y, Gao J, J. Mech. Behav. Biomed. Mater., 65, 428 (2017)
Rath SN, Pryymachuk G, Bleiziffer OA, Lam CX, Arkudas A, Ho ST, Beier JP, Horch RE, Hutmacher DW, Kneser U, J. Mater. Sci. Mater. Med., 22, 1279 (2011)
Aronin CEP, Cooper JA, Sefcik LS, Tholpady SS, Ogle RC, Botchwey EA, Acta Biomater., 4, 1187 (2008)
Varaprasad K, Mohan YM, Vimala K, Raju KM, J. Appl. Polym. Sci., 121(2), 784 (2011)
Raghavendra GM, Jayaramudu T, Varaprasad K, Ramesh S, Raju KM, RSC Adv., 4, 3494 (2014)
Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM, Carbohydr. Polym., 95, 188 (2013)
Isa ZM, Hobkirk IA, Ann Dent UM, 7, 27 (2000)
Jeong SI, Kang YJ, Lee KS, Shin H, Lee BK, Biotechnol. Bioprocess Eng., 22, 200 (2017)
Kumar P, Dehiya BS, Sindhu A, Int. J. Appl. Eng. Res., 13, 2752 (2018)
Rajeswari TVTAS, Trends Biomater Artif Organs, 18, 17 (2004)
Duminis T, Shahid S, Hill RG, Front. Mater., 3, 59 (2017)
Kokubo T, Ito S, Shigematsu M, Sakka S, J. Mater. Sci., 20, 2001 (1985)
Antoniac I, Bioceramics and biocomposites: from research to clinical practice, John Wiley & Sons, Hoboken (2019).
Al-Sanabani FA, Ahmed AM, Al-Qudaimi NH, Am. J. Mater. Res., 1, 26 (2014)
Sun K, Ye J, Perez DR, Metzger DW, J. Immunol., 186, 987 (2011)
Short KR, Reading PC, Wang N, Diavatopoulos DA, Wijburg OL, MBio, 3, e00255 (2012)
Peltola VT, Boyd KL, McAuley JL, Rehg JE, McCullers JA, Infect Immun., 74, 2562 (2006)
McCullers JA, Clin. Microbiol. Rev., 19, 571 (2006)
Karchmer TB, Giannetta ET, Muto CA, Archives of Internal Medicine, 21, 3294 (2000).
Pasman L, Yale J. Biol. Medicine, 85, 45 (2012)
Mirani G, Williams PL, Chernoff M, Abzug MJ, Levin MJ, Seage GR, Oleske JM, Purswani MU, Hazra R, Traite S, Clin. Infect Dis., 61, 1850 (2015)
Sung JM, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Choi HG, Int. J. Pharm., 392, 232 (2010)
Stebbins ND, Ouimet MA, Uhrich KE, Adv. Drug Deliv. Rev., 78, 77 (2014)
Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L, Adv. Drug Deliv. Rev., 127, 46 (2018)
Drulis-Kawa Z, Dorotkiewicz-Jach A, Int. J. Pharm., 387, 187 (2010)
Abdal-hay A, Sheikh FA, Lim JK, Colloids Surf. B: Biointerfaces, 102, 635 (2013)
Abdal-hay A, Hamdy AS, Abdellah MY, Lim J, Mater. Lett., 126, 267 (2014)
Abdal-Hay A, Barakat NM, Lim JK, Sci. Adv. Mater., 4, 1268 (2012)
Stojanovska E, Canbay E, Pampal ES, Calisir MD, Agma O, Polat Y, Simsek R, Gundogdu NAS, Akgul Y, Kilic A, RSC Adv., 6, 83783 (2016)
Huang YC, Huang YY, Huang CC, Liu HC, J. Biomed. Mater. Res. B Appl. Biomater., 74, 659 (2005)
Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP, Polymer, 35(5), 1068 (1994)
Hsu SH, Su CH, Chiu IM, Artif. Organs, 33, 26 (2009)
Di Maio E, Mensitieri G, Iannace S, Nicolais L, Li W, Flumerfelt RW, Polym. Eng. Sci., 45(3), 432 (2005)
Parks KL, Beckman EJ, Polym. Eng. Sci., 36(19), 2404 (1996)
LIAPIS AI, BRUTTINI R, Sep. Technol., 4(3), 144 (1994)
Hotaling NA, Bharti K, Kriel H, Simon CG, Biomaterials, 61, 327 (2015)
Andrews JM, J. Antimicrob. Chemother, 48, 5 (2001)
Rodriguez-Tudela JL, Barchiesi F, Bille J, Chryssanthou E, et al., lin. Microbiol. Infection, 9, 1 (2003)
Kim D, Choi GJ, Baek S, Abdullah A, Jang S, Hong SA, Kim BG, Lee J, Kang H, Lee D, Sci. Adv. Mater., 9, 1669 (2017)
Zahedi P, Fallah-Darrehchi M, NAdoushan SA, Aeinehvand R, Bagheri L, Najafi M, Korean J. Chem. Eng., 34(7), 2110 (2017)
Angelova RA, In Advances in Yarn Spinning Technology, 12, 315 (2010).
Bencherif SA, Sands RW, Ali OA, Li WA, Lewin SA, Braschler TM, Shih TY, Verbeke CS, Bhatta D, Dranoff G, Nat. Commun., 6, 7556 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로