Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 3, 2019
Accepted January 12, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ferric molybdate nanocomposite
Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran 1Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran 2Department of Chemical Engineering, School of Chemical Engineering, Kherad Institute of Higher Education, Bushehr, Iran
esmaeili.hossein@iaubushehr.ac.ir, esmaeili.hossein@gmail.com
Korean Journal of Chemical Engineering, May 2020, 37(5), 804-814(11), 10.1007/s11814-020-0493-6
Download PDF
Abstract
The removal efficiency of phosphate ion from aqueous media using magnesium oxide/iron molybdate (MgO/Fe2(MoO4)3) nanocomposite was investigated. MgO nanoparticles were chemically modified by ferric molybdate. Then, the structure and morphology of the nanocomposite was completely investigated using different analyses such as SEM, EDX/Map, FTIR, XRD, TGA, BET, and TEM. The TEM analysis demonstrated that the particles in the mentioned nano-composite were on a nanoscale. BET analysis proved that the nanocomposite was mesoporous with mean pore size of 9.4 nm. The sorption outcomes demonstrated that the highest phosphate sorption yield was achieved at 98.38%, exhibiting remarkable sorption efficiency. Carbonate ions showed to have the highest interfering impact compared to sulfate and nitrate ions, since phosphate ion removal efficiency decreased significantly when carbonate and phosphate ions were simultaneously available in the solution. The thermodynamic studies demonstrated that the current sorption process was spontaneous, possible, and exothermic. The sorption equilibrium investigation showed that the Freundlich isotherm model can describe the adsorption of phosphate ion better than can the Langmuir model, and the maximum sorption capacity was obtained as 30.21mg/g. Additionally, the adsorbent was successfully regenerated four times and was able to perform the sorption and desorption process well.
References
Kanagaraj J, Senthilvelan T, Panda RC, Aravindhan R, Mandal AB, Chem. Eng. Technol., 37(10), 1741 (2014)
Yoshida H, Galinada WA, AIChE J., 48(10), 2193 (2002)
Almeelbi T, Bezbaruah A, J. Nanopart. Res., 14, 900 (2012)
Axinte O, Volf I, Bulgariu L, Environ. Eng. Manag. J., 16, 625 (2017)
Habiby SR, Esmaeili H, Foroutan R, Sep. Sci. Technol. (2019).
Liu RX, Guo JL, Tang HX, J. Colloid Interface Sci., 248(2), 268 (2002)
Cho SY, Choi DK, Korean J. Chem. Eng., 13(4), 409 (1996)
Patureau D, Helloin E, Rustrian E, Bouchez T, Delgenes JP, Moletta R, Water Res., 35, 189 (2001)
Adin A, Soffer Y, Aim RB, Water Sci. Technol., 38, 27 (1998)
Song M, Duan Z, Qin R, Xu X, Liu S, Song S, Zhang M, Li Y, Shi J, Korean J. Chem. Eng., 36(6), 869 (2019)
Namasivayam C, Sangeetha D, J. Colloid Interface Sci., 280(2), 359 (2004)
Cundy AB, Hopkinson L, Whitby RL, Sci. Total Environ., 400, 42 (2008)
Abshirini Y, Foroutan R, Esmaeili H, Mater. Res. Express, 6, 045607 (2019)
Abbasi S, Foroutan R, Esmaeili H, Esmaeilzadeh F, Desalin. Water Treat., 141, 269 (2019)
Tamjidi S, Esmaeili H, Chem. Eng. Technol., 42(3), 607 (2019)
House MP, Carley AF, Bowker M, J. Catal., 252(1), 88 (2007)
Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B, J. Polym. Environ., 27, 263 (2019)
Xiang J, Lin Q, Cheng S, Guo J, Yao X, Liu Q, Yin G, Liu D, Environ. Sci. Pollut. Res., 25, 14032 (2018)
Ashok A, Kennedy LJ, Vijaya JJ, Aruldoss, Clean Technol. Environ., 20, 1219 (2018)
Srirapu VKVP, Kumar A, Kumari N, Srivastava P, Singh RN, Int. J. Hydrog. Energy, 43(34), 16543 (2018)
Seevakan K, Manikandan A, Devendran P, Baykal A, Alagesan T, Ceram. Int., 44, 17735 (2018)
Hatami H, Fotovat A, Halajnia A, Appl. Clay Sci., 152, 333 (2018)
Jeon H, Kim DJ, Kim SJ, Kim JH, Fuel Process. Technol., 116, 325 (2013)
Feng J, Gao M, Zhang Z, Liu S, Zhao X, Ren Y, Lv Y, Fan ZJ, Colloid Interface Sci., 510, 69 (2018)
Alayat A, Echeverria E, Mcllroy DN, McDonald AG, Fuel Process. Technol., 177, 89 (2018)
Shafiee M, Foroutan R, Fouladi K, Ahmadlouydarab M, Ramavandi B, Sahebi S, Adv. Powder Technol., 30(3), 544 (2019)
Vahid BR, Haghighi M, Energy Conv. Manag., 126, 362 (2016)
Foroutan R, Oujifard A, Papari F, Esmaeili H, 3 Biotech., 9, 78 (2019)
Yue QY, Wang WY, Gao BY, Xu X, Zhang J, Li Q, Water Environ. Res., 82(4), 374 (2010)
Naushad M, Sharma G, Kumar A, Sharma S, Ghfar AA, Bhatnagar A, Stadler FJ, Khan MR, Int. J. Biol. Macromol., 106, 1 (2018)
Wang J, Liu Y, Hu P, Huang R, Environ. Prog. Sustain., 37, 267 (2018)
Tamjidi S, Esmaeili H, Moghadas BK, Mater. Res. Express, 6, 102004 (2019)
Sarvestani FS, Esmaeili H, Ramavandi B, 3 Biotech, 6, 251 (2016)
Siwek H, Bartkowiak A, Wlodarczyk M, Water, 11, 633 (2019)
Robalds A, Dreijalte L, Bikovens O, Klavins M, Desalin. Water Treat., 57, 13285 (2016)
Zeng L, Li X, Liu J, Water Res., 38, 1318 (2004)
Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479 (2018)
Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Saberi M, Sahebi S, Dobaradaran S, Ramavandi B, Environ. Sci. Pollut. Res., 26, 6336 (2019)
Dada AO, Olalekan AP, Olatunya AM, Dada OJIJC, IOSR-JAC, 3, 38 (2012)
Esmaeili H, Foroutan R, J. Dispersion Sci. Technol., 40, 990 (2019)
Kelm MAP, da Silva Junior MJ, de Barros Holanda SH, et al., Environ. Sci. Pollut. Res., 26, 28558 (2019)
You N, Wang XF, Li JY, Fan HT, Shen H, Zhang Q, J. Ind. Eng. Chem., 70, 346 (2019)
Liu Y, Xu H, Biochem. Eng. J., 35, 174 (2007)
Yoshida H, Galinada WA, AIChE J., 48(10), 2193 (2002)
Almeelbi T, Bezbaruah A, J. Nanopart. Res., 14, 900 (2012)
Axinte O, Volf I, Bulgariu L, Environ. Eng. Manag. J., 16, 625 (2017)
Habiby SR, Esmaeili H, Foroutan R, Sep. Sci. Technol. (2019).
Liu RX, Guo JL, Tang HX, J. Colloid Interface Sci., 248(2), 268 (2002)
Cho SY, Choi DK, Korean J. Chem. Eng., 13(4), 409 (1996)
Patureau D, Helloin E, Rustrian E, Bouchez T, Delgenes JP, Moletta R, Water Res., 35, 189 (2001)
Adin A, Soffer Y, Aim RB, Water Sci. Technol., 38, 27 (1998)
Song M, Duan Z, Qin R, Xu X, Liu S, Song S, Zhang M, Li Y, Shi J, Korean J. Chem. Eng., 36(6), 869 (2019)
Namasivayam C, Sangeetha D, J. Colloid Interface Sci., 280(2), 359 (2004)
Cundy AB, Hopkinson L, Whitby RL, Sci. Total Environ., 400, 42 (2008)
Abshirini Y, Foroutan R, Esmaeili H, Mater. Res. Express, 6, 045607 (2019)
Abbasi S, Foroutan R, Esmaeili H, Esmaeilzadeh F, Desalin. Water Treat., 141, 269 (2019)
Tamjidi S, Esmaeili H, Chem. Eng. Technol., 42(3), 607 (2019)
House MP, Carley AF, Bowker M, J. Catal., 252(1), 88 (2007)
Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B, J. Polym. Environ., 27, 263 (2019)
Xiang J, Lin Q, Cheng S, Guo J, Yao X, Liu Q, Yin G, Liu D, Environ. Sci. Pollut. Res., 25, 14032 (2018)
Ashok A, Kennedy LJ, Vijaya JJ, Aruldoss, Clean Technol. Environ., 20, 1219 (2018)
Srirapu VKVP, Kumar A, Kumari N, Srivastava P, Singh RN, Int. J. Hydrog. Energy, 43(34), 16543 (2018)
Seevakan K, Manikandan A, Devendran P, Baykal A, Alagesan T, Ceram. Int., 44, 17735 (2018)
Hatami H, Fotovat A, Halajnia A, Appl. Clay Sci., 152, 333 (2018)
Jeon H, Kim DJ, Kim SJ, Kim JH, Fuel Process. Technol., 116, 325 (2013)
Feng J, Gao M, Zhang Z, Liu S, Zhao X, Ren Y, Lv Y, Fan ZJ, Colloid Interface Sci., 510, 69 (2018)
Alayat A, Echeverria E, Mcllroy DN, McDonald AG, Fuel Process. Technol., 177, 89 (2018)
Shafiee M, Foroutan R, Fouladi K, Ahmadlouydarab M, Ramavandi B, Sahebi S, Adv. Powder Technol., 30(3), 544 (2019)
Vahid BR, Haghighi M, Energy Conv. Manag., 126, 362 (2016)
Foroutan R, Oujifard A, Papari F, Esmaeili H, 3 Biotech., 9, 78 (2019)
Yue QY, Wang WY, Gao BY, Xu X, Zhang J, Li Q, Water Environ. Res., 82(4), 374 (2010)
Naushad M, Sharma G, Kumar A, Sharma S, Ghfar AA, Bhatnagar A, Stadler FJ, Khan MR, Int. J. Biol. Macromol., 106, 1 (2018)
Wang J, Liu Y, Hu P, Huang R, Environ. Prog. Sustain., 37, 267 (2018)
Tamjidi S, Esmaeili H, Moghadas BK, Mater. Res. Express, 6, 102004 (2019)
Sarvestani FS, Esmaeili H, Ramavandi B, 3 Biotech, 6, 251 (2016)
Siwek H, Bartkowiak A, Wlodarczyk M, Water, 11, 633 (2019)
Robalds A, Dreijalte L, Bikovens O, Klavins M, Desalin. Water Treat., 57, 13285 (2016)
Zeng L, Li X, Liu J, Water Res., 38, 1318 (2004)
Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479 (2018)
Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Saberi M, Sahebi S, Dobaradaran S, Ramavandi B, Environ. Sci. Pollut. Res., 26, 6336 (2019)
Dada AO, Olalekan AP, Olatunya AM, Dada OJIJC, IOSR-JAC, 3, 38 (2012)
Esmaeili H, Foroutan R, J. Dispersion Sci. Technol., 40, 990 (2019)
Kelm MAP, da Silva Junior MJ, de Barros Holanda SH, et al., Environ. Sci. Pollut. Res., 26, 28558 (2019)
You N, Wang XF, Li JY, Fan HT, Shen H, Zhang Q, J. Ind. Eng. Chem., 70, 346 (2019)
Liu Y, Xu H, Biochem. Eng. J., 35, 174 (2007)