Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 12, 2019
Accepted January 31, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Modelling of batch biomethanation process for maximizing income based on values of consumed and produced gases
Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran 1Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
osfouri@pgu.ac.ir
Korean Journal of Chemical Engineering, May 2020, 37(5), 815-826(12), 10.1007/s11814-020-0501-x
Download PDF
Abstract
Economic estimation of an environmental-friendly biomethanation process based on economic values of consumed and produced gases would be a unique attitude. In this paper, time and space dependent concentration profiles of components involved in a batch process, designed for biomethanation, were predicted through a mass transfer modelling. The reaction terms used in the modeling required bio-kinetic parameters of μ max, m, kL, YC/L, YX/L, and YP/L which were globally optimized via a predefined algorithm using some experimental data as 0.0987 day-1, 0.1374 day-1, 1.5422mole m-3, -1.3636, -0.0183, -0.0908. Upon model verification, process income was calculated for a long-term scenario under a variety of factors and maximized through response surface methodology. The maximum income achieved was $-0.4/m3 bioreactor. A term carbon subsidy was considered in the income equation in order to find a break-even income for subsidy value of $363/ton CO2. Sensitivity analysis revealed that the amount of carbon subsidy directly influenced the selection of low or high levels of some process parameters to make the process profitable. In addition, it was found that pressure and liquid volume were the most important factors to achieve maximum income when $30 and $300/ton CO2 carbon subsidy were allocated to the process, respectively.
References
Ampelli C, Perathoner S, Centi G, Philos. Trans. R. Soc. A, 373, 201401 (2015)
Steinlechner C, Junge H, Angew. Chem.-Int. Edit., 57, 44 (2018)
Olivier JG, Peters J, Trends in global CO2 and total greenhouse gas emissions, Report (2018).
Dudley B, BP statistical review of world energy, Report (2018).
Chai Q, Xiao Z, Lai KH, Zhou G, Int. J. Prod. Econ., 203, 311 (2018)
Naims H, Environ. Sci. Pollut. Res., 23, 22226 (2016)
Bailera M, Lisbona P, Romeo LM, Espatolero S, Renew. Sust. Energ. Rev., 69, 292 (2017)
Iaquaniello G, Setini S, Salladini A, De Falco M, Int. J. Hydrog. Energy, 43(36), 17069 (2018)
Squalli J, Energy, 127, 479 (2017)
Blanco H, Nijs W, Ruf J, Faaij A, Appl. Energy, 232, 323 (2018)
Kim JH, Chang WS, Pak D, Korean J. Chem. Eng., 32(10), 2067 (2015)
Inkeri E, Tynjala T, Laari A, Hyppanen T, Appl. Energy, 209, 95 (2018)
Ghaib K, Ben-Fares FZ, Renew. Sust. Energ. Rev., 81, 433 (2018)
Tarkowski R, Renew. Sust. Energ. Rev., 105, 86 (2019)
Savvas S, Donnelly J, Patterson T, Chong ZS, Esteves SR, Appl. Energy, 202, 238 (2017)
Biswas J, Chowdhury R, Bhattacharya P, in Industry interactive innovations in science, engineering and technology, Springer, P. Biswas and H. Chattopadhyay Eds., Springer, Singapore (2018).
Diaz I, Perez C, Alfaro N, Fdz-Polanco F, Bioresour. Technol., 185, 246 (2015)
Merkle W, Baer K, Lindner J, Zielonka S, Ortloff F, Graf F, Kolb T, Jungbluth T, Lemmer A, Bioresour. Technol., 232, 72 (2017)
Strubing D, Huber B, Lebuhn M, Drewes JE, Koch K, Bioresour. Technol., 245, 1176 (2017)
Huang YK, Dehkordy FM, Li Y, Emadi S, Bagtzoglou A, Li BK, Chem. Eng. J., 334, 1383 (2018)
Bensmann A, Hanke-Rauschenbach R, Heyer R, Kohrs F, Benndorf D, Reichl U, Sundmacher K, Appl. Energy, 134, 413 (2014)
Leonzio G, Chem. Eng. J., 290, 490 (2016)
Leu JY, Lin YH, Chang FL, Chem. Eng. Res. Des., 89(9A), 1879 (2011)
Osfouri S, Azin R, Gas Process., 4, 14 (2016)
Hayduck W, Laudie H, AIChE J., 20, 611 (1974)
Fairbanks D, Wilke C, Ind. Eng. Chem., 42, 471 (1950)
Marrero TR, Mason EA, J. Phys. Chem. Ref. Data, 1, 3 (1972)
Weissman S, Dubro G, J. Chem. Phys., 54, 1881 (1971)
Chu T, Chappelear PS, Kobayashi R, J. Chem. Eng. Data, 19, 299 (1974)
Fernandez-Prini R, Alvarez JL, Harvey AH, J. Phys. Chem. Ref Data, 32, 903 (2003)
Luo G, Angelidaki I, Biotechnol. Bioeng., 109(11), 2729 (2012)
Zabranska J, Pokorna D, Biotechnol. Adv., 36, 707 (2018)
Owens J, Legan J, Fems Microbiol. Rev., 3, 419 (1987)
Cadogan SP, Maitland GC, Trusler JPM, J. Chem. Eng. Data, 59(2), 519 (2014)
Schmelzer JW. Zanotto ED, Fokin VM, J. Chem. Phys., 122, 074511 (2005)
Rosa MD, Energy Environ., 31, 60 (2018)
Glenk G, Reichelstein S, Nat. Energy, 4, 216 (2019)
Steinlechner C, Junge H, Angew. Chem.-Int. Edit., 57, 44 (2018)
Olivier JG, Peters J, Trends in global CO2 and total greenhouse gas emissions, Report (2018).
Dudley B, BP statistical review of world energy, Report (2018).
Chai Q, Xiao Z, Lai KH, Zhou G, Int. J. Prod. Econ., 203, 311 (2018)
Naims H, Environ. Sci. Pollut. Res., 23, 22226 (2016)
Bailera M, Lisbona P, Romeo LM, Espatolero S, Renew. Sust. Energ. Rev., 69, 292 (2017)
Iaquaniello G, Setini S, Salladini A, De Falco M, Int. J. Hydrog. Energy, 43(36), 17069 (2018)
Squalli J, Energy, 127, 479 (2017)
Blanco H, Nijs W, Ruf J, Faaij A, Appl. Energy, 232, 323 (2018)
Kim JH, Chang WS, Pak D, Korean J. Chem. Eng., 32(10), 2067 (2015)
Inkeri E, Tynjala T, Laari A, Hyppanen T, Appl. Energy, 209, 95 (2018)
Ghaib K, Ben-Fares FZ, Renew. Sust. Energ. Rev., 81, 433 (2018)
Tarkowski R, Renew. Sust. Energ. Rev., 105, 86 (2019)
Savvas S, Donnelly J, Patterson T, Chong ZS, Esteves SR, Appl. Energy, 202, 238 (2017)
Biswas J, Chowdhury R, Bhattacharya P, in Industry interactive innovations in science, engineering and technology, Springer, P. Biswas and H. Chattopadhyay Eds., Springer, Singapore (2018).
Diaz I, Perez C, Alfaro N, Fdz-Polanco F, Bioresour. Technol., 185, 246 (2015)
Merkle W, Baer K, Lindner J, Zielonka S, Ortloff F, Graf F, Kolb T, Jungbluth T, Lemmer A, Bioresour. Technol., 232, 72 (2017)
Strubing D, Huber B, Lebuhn M, Drewes JE, Koch K, Bioresour. Technol., 245, 1176 (2017)
Huang YK, Dehkordy FM, Li Y, Emadi S, Bagtzoglou A, Li BK, Chem. Eng. J., 334, 1383 (2018)
Bensmann A, Hanke-Rauschenbach R, Heyer R, Kohrs F, Benndorf D, Reichl U, Sundmacher K, Appl. Energy, 134, 413 (2014)
Leonzio G, Chem. Eng. J., 290, 490 (2016)
Leu JY, Lin YH, Chang FL, Chem. Eng. Res. Des., 89(9A), 1879 (2011)
Osfouri S, Azin R, Gas Process., 4, 14 (2016)
Hayduck W, Laudie H, AIChE J., 20, 611 (1974)
Fairbanks D, Wilke C, Ind. Eng. Chem., 42, 471 (1950)
Marrero TR, Mason EA, J. Phys. Chem. Ref. Data, 1, 3 (1972)
Weissman S, Dubro G, J. Chem. Phys., 54, 1881 (1971)
Chu T, Chappelear PS, Kobayashi R, J. Chem. Eng. Data, 19, 299 (1974)
Fernandez-Prini R, Alvarez JL, Harvey AH, J. Phys. Chem. Ref Data, 32, 903 (2003)
Luo G, Angelidaki I, Biotechnol. Bioeng., 109(11), 2729 (2012)
Zabranska J, Pokorna D, Biotechnol. Adv., 36, 707 (2018)
Owens J, Legan J, Fems Microbiol. Rev., 3, 419 (1987)
Cadogan SP, Maitland GC, Trusler JPM, J. Chem. Eng. Data, 59(2), 519 (2014)
Schmelzer JW. Zanotto ED, Fokin VM, J. Chem. Phys., 122, 074511 (2005)
Rosa MD, Energy Environ., 31, 60 (2018)
Glenk G, Reichelstein S, Nat. Energy, 4, 216 (2019)