ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 12, 2019
Accepted February 6, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Composite of nanocrystalline cellulose with tin dioxide as Lightweight Substrates for high-performance Lithium-ion battery

Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Korea 1Department of Electrical Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Korea
psj@gachon.ac.kr
Korean Journal of Chemical Engineering, May 2020, 37(5), 898-904(7), 10.1007/s11814-020-0506-5
downloadDownload PDF

Abstract

Nanocrystalline Cellulose (CNC) has smoother surfaces, better optical transparency and higher mechanical strength in comparison with various cellulose fibers. These properties combined with their low cost, light weight, and flexiblility indicate CNC’s great potential as an attractive candidate for preparation of carbon materials, which can be promising electrode for Lithium-ion batteries. However, CNC cannot be directly used in battery fabrication because of its electrically non-conductive property. Wherefore, using pyrolysis to convert CNC into conductive materials is extensively investigated. In our study, high temperature range is used to convert nanocrystalline cellulose into highly conductive carbon material and used in Lithium-ion batteries. The nanocellulose powder after pyrolysis from 800 °C and 1,600 °C is used as active material in Lithium-ion battery electrodes, and the results obtained show a good electrochemical performance with stable cycling capacity. Following, the carbon network obtained through the pyrolysis (800 °C and 1,600 °C) of nanocrystalline cellulose incorporation with tin dioxide (SnO2) was also used as electrode material in Lithium-ion batteries, resulting in stability, outstanding capacity and better performance in comparison with other carbon-based materials.

References

Zhu HL, Luo W, Ciesielski PN, Fang ZQ, Zhu JY, Henriksson G, Himmel ME, Hu LB, Chem. Rev., 116(16), 9305 (2016)
Li Z, Liu J, Jiang K, Thundat T, Nano Energy, 25, 161 (2016)
Yang X, Shi KY, Zhitomirsky I, Cranston ED, Adv. Mater., 27(40), 6104 (2015)
Wang L, Schutz C, Salazar-Alvarez G, Titirici MM, RSC Adv., 4, 17549 (2014)
Du X, Zhang Z, Liu W, Deng Y, Nano Energy, 35, 299 (2017)
Wang Z, Pan R, Sun R, Edstrom K, Stromme M, Nyholm L, ACS Appl. Energy Mater., 1, 4341 (2018)
Foresti ML, Vazquez A, Boury B, Carbohydr. Polym., 157, 447 (2017)
Hsieh MC, Kim C, Nogi M, Suganuma K, Nanoscale, 5, 9289 (2013)
Lee J, Moon JH, Korean J. Chem Eng., 34, 3195 (2017)
Nguyen TL, Salunkhe TT, Vo TN, Choi HW, Lee YC, Choi JS, Hur J, Kim IT, J. Power Sources, 414, 470 (2019)
Vo TN, Kim H, Hur J, Choi W, Kim IT, J. Mater. Chem. A, 6, 22645 (2018)
Chen Y, Ma J, Li Q, Wang T, Nanoscale, 5(8), 3262 (2013)
Prabakar SJR, Hwang YH, Bae EG, Shim S, Kim D, Lah MS, Sohn KS, Pyo M, Adv. Mater., 25(24), 3307 (2013)
Deng J, Chen Y, Ma J, Zhang E, Wang T, J. Nanosci. Nanotechnol., 13(6), 4297 (2013)
Zhao Q, Ma L, Zhang Q, Wang C, Xu X, J. Nanomater., 2015, 6 (2015)
Yin XM, Li CC, Zhang M, Hao QY, Liu S, Chen LB, Wang TH, J. Phys. Chem. C, 114(17), 8084 (2010)
Chen LB, Yin XM, Mei L, Li CC, Lei DN, Zhang M, Li QH, Xu Z, Xu C, Wang TH, Nanotechnology, 23(3), 035402 (2011)
Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X, Adv. Eng. Mater., 6(10), 150205 (2016)
Liang J, Yuan C, Li H, Fan K, Wei Z, Sun H, Ma J, Nano-Micro Lett., 10, 21 (2018)
Dirican M, Lu Y, Ge Y, Yildiz O, Zhang X, ACS Appl. Mater. Interfaces, 7(33), 18387 (2015)
Huang B, Li X, Pei Y, Li S, Cao X, Masse RC, Cao G, Small, 12(14), 1945 (2016)
Kuga S, Kim DY, Nishiyama Y, Brown RM, Mol. Cryst. Lip. Cryst., 387, 13 (2002)
Lin Z, Xiong X, Zheng J, Wang G, Yang C, Mater. Lett., 202, 123 (2017)
Luo YT, Zhou XL, Zhong YR, Yang M, Wei JP, Zhou Z, Electrochim. Acta, 154, 136 (2015)
Zhu C, Xia X, Liu J, Fan Z, Chao D, Zhang H, Fan HJ, Nano Energy, 4, 105 (2014)
Jiang B, He Y, Li B, Zhao S, Wang S, He YB, Lin Z, Angew. Chem.-Int. Edit., 56(7), 1869 (2017)
Zhang M, Sun Z, Zhang T, Sui D, Ma Y, Chen Y, Carbon, 102, 32 (2016)
Li R, Wang B, Ji S, Jin P, RSC Adv., 6(59), 54179 (2016)
Hu R, Ouyang Y, Liang T, Wang H, Liu J, Chen J, Yang C, Yang L, Zhu M, Adv. Mater., 29(13), 160500 (2017)
Oh SI, Kim JC, Kim DW, Cellulose, 26, 2557 (2019)
Chen Z, Xu Z, Li W, Chen C, Yang J, Liu J, Gong F, Liao J, Wu M, ACS Appl. Energy Mater., 2, 5171 (2019)
Wang M, Li S, Zhang Y, Huang J, Chem. Eur. J., 21, 16195 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로