ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 12, 2019
Accepted February 6, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of enhanced fluorescent graphene quantum dots for catecholamine neurotransmitter sensing

Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Korea 1Department of Electronics Engineering, Gachon University, Seongnam 13120, Korea
psj@gachon.ac.kr
Korean Journal of Chemical Engineering, June 2020, 37(6), 1000-1007(8), 10.1007/s11814-020-0507-4
downloadDownload PDF

Abstract

We employed polypyrrole/graphene quantum dot (PPy/GQD) composites as a sensor for the simple and selective detection of catecholamine neurotransmitters (CNs), such as dopamine (DA), epinephrine (EP), norepinephrine (NE), which play vital roles in the peripheral and central nervous systems. The PPy/GQD composites showed strong fluorescence emission, which was significantly increased, by as much as greater than three times, compared to that of the pristine GQDs. In neutral solution, the CNs on the surface of the PPy/GQD composites were converted into a quinone structure, which triggered the fluorescence quenching of the PPy/GQD composites via a photo-induced electron transfer process. The CN concentration could be effectively monitored based on the quenching of the fluorescence signal of the PPy/GQDs. The quenching effect of DA is the fastest and most effective, followed by those of EP and NE, respectively, and the quenched fluorescence intensity of the PPy/GQDs was proportional to the concentration of DA (0.007-250 μM), EP (0.7-250 μM), and NE (5-500 μM). The present system was used for the quantification of CNs in human serum samples with acceptable results.

References

Pradhan T, Jung HS, Jang JH, Kim TW, Kang C, Kim JS, Chem. Soc. Rev., 43(13), 4684 (2014)
Ribeiro JA, Fernandes PMV, Pereira CM, Silva F, Talanta, 160, 653 (2016)
Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M, Anal. Chim. Acta, 917, 85 (2016)
Mekassa B, Tessema M, Chandravanshi BS, Baker PGL, Muya FN, J. Electroanal. Chem., 807, 145 (2017)
Zaidi SA, Electrochim. Acta, 274, 370 (2018)
Azzouz A, Goud KY, Raza N, Ballesteros E, Lee SE, Hong J, Deep A, Kim KH, Trac-Trends Anal. Chem., 110, 15 (2019)
Azaryan A, Ligor T, Buszewski B, Temerdashev A, Dmitrieva E, Gashimova E, Chromatographia, 81(11), 1487 (2018)
Liu ZP, Jin ML, Cao JP, Niu RW, Li PE, Zhou GF, Yu Y, van den Berg A, Shui LL, Sens. Actuators B-Chem., 273, 873 (2018)
Le TH, Kim JH, Park SJ, J. Crystal Growth, 468, 78 (2017)
Liu YM, Liu ZL, Shi YM, Luminescence, 26(1), 59 (2011)
Huang JY, Xu WT, Gong YQ, Weng SH, Lin XH, Int. J. Electrochem. Sci., 11(10), 8193 (2016)
Zhu ZY, Ravelet C, Perrier S, Guieu V, Roy B, Perigaud C, Peyrin E, Anal. Chem., 82(11), 4613 (2010)
Ko KC, Wu JS, Kim HJ, Kwon PS, Kim JW, Bartsch RA, Lee JY, Kim JS, Chem. Commun., 47(11), 3165 (2011)
Kim JS, Kim HJ, Kim HM, Kim SH, Lee JW, Kim SK, Cho BR, J. Org. Chem., 71(21), 8016 (2006)
Campuzano S, Yanez-Sedeno S, Pingarron JM, Nanomaterials, 9(4), 18 (2019)
Liu XT, Na WD, Liu H, Sue XG, Biosens. Bioelectron., 98, 222 (2017)
Lin LX, Zhang SW, Chem. Commun., 48, 10177 (2012)
Yu XQ, Zhang WS, Zhang PP, Su ZQ, Biosens. Bioelectron., 89, 72 (2017)
Pham HD, Pham VH, Oh ES, Chung JS, Kim S, Korean J. Chem. Eng., 29(1), 125 (2012)
Jeon SS, Kim C, Ko J, Im SS, J. Mater. Chem., 21(22), 8146 (2011)
Sun R, Chen HY, Li QW, Song QJ, Zhang XT, Nanoscale, 6(21), 12912 (2014)
Chatterjee S, Shit A, Nandi AK, J. Mater. Chem. A, 1(39), 12302 (2013)
Yang C, Xu CX, Wang XM, Langmuir, 28(9), 4580 (2012)
Dong YQ, Li GL, Zhou NN, Wang RX, Chi YW, Chen GN, Anal. Chem., 84(19), 8378 (2012)
Shen JH, Zhu YH, Yang XL, Li CZ, Chem. Commun., 48(31), 3686 (2012)
Zhou X, Ma PP, Wang AQ, Yu CF, Qian T, Wu SS, Shen J, Biosens. Bioelectron., 64, 404 (2015)
Lin LP, Rong MC, Luo F, Chen DM, Wang YR, Chen X, Trac-Trends Anal. Chem., 54, 83 (2014)
Routh P, Das S, Shit A, Bairi P, Das P, Nandi AK, ACS Appl. Mater. Interfaces, 5(23), 12672 (2013)
Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H, Adv. Funct. Mater., 22(22), 4711 (2012)
Lin JH, Yu CJ, Yang YC, Tseng WL, Phys. Chem. Chem. Phys., 17(23), 15124 (2015)
Yildirim A, Bayindir M, Anal. Chem., 86(11), 5508 (2014)
Zen JM, Kumar AS, Chen JC, Electroanalysis, 13(6), 457 (2001)
Gill R, Freeman R, Xu JP, Willner I, Winograd S, Shweky I, Banin U, J. Am. Chem. Soc., 128(48), 15376 (2006)
Li ZZ, Zhang QY, Huang HY, Ren CJ, Ouyang S, Zhao Q, Talanta, 171, 16 (2017)
Liu SY, Shi FP, Chen L, Su XG, Sens. Actuators B-Chem., 191, 246 (2014)
Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H, Nat. Mater., 9(8), 676 (2010)
Diaz-Diestra D, Thapa B, Beltran-Huarac J, Weiner BR, Morell G, Biosens. Bioelectron., 87, 693 (2017)
Ban R, Abdel-Halim ES, Zhang JR, Zhu JJ, Analyst, 140(4), 1046 (2015)
Mu Q, Xu H, Li Y, Ma SJ, Zhang XH, Analyst, 139(1), 93 (2014)
Zhang XD, Chen XK, Kai SQ, Wang HY, Yang JJ, Wu FG, Chen Z, Anal. Chem., 87(6), 3360 (2015)
Kudoh R, Sudo A, Endo T, Macromolecules, 43(3), 1185 (2010)
Wang YP, Cheng T, Sun JL, Liu ZC, Frasconi M, Goddard WA, Stoddart JF, J. Am. Chem. Soc., 140(42), 13827 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로