ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 31, 2020
Accepted March 18, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improved biodegradation of polyvinyl alcohol by hybrid nanoflowers of degrading enzymes from Bacillus niacini

1Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhang 050000, P. R. China 2State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P. R. China
cjd007cn@163.com
Korean Journal of Chemical Engineering, June 2020, 37(6), 1020-1028(9), 10.1007/s11814-020-0547-9
downloadDownload PDF

Abstract

Polyvinyl alcohol (PVA) is a synthetic polymer that is difficult to degrade in nature. In this study, we synthesized PVA-degrading enzymes (PVAase)-Cu3(PO4)2 hybrid nanoflowers by using crude PVAase from Bacillus niacini for PVA degradation. The influences of PVAase concentration, Cu2+ concentration, and incubation time on the nucleation and activity of the PVAase hybrid nanoflower were investigated. The maximal activity recovery of the PVAase hybrid nanoflower was approximately 85% at 0.25 mg/mL of PVAase, 0.36mM Cu2+, and 72 h incubation time. The optimum temperature and pH of PVAase did not change before and after immobilization. Compared with free PVAase, the PVAase hybrid nanoflower showed high thermal stability and storage stability. Additionally, the PVAase hybrid nanoflower displayed excellent reusability after eight cycles and promising PVA degradability, indicating its potential application in PVA degradation.

References

Tsujiyama S, Okada A, Biotechnol. Lett., 35(11), 1907 (2013)
Halima NB, RSC Adv., 6, 39823 (2016)
Liu YL, Deng YL, Chen P, Duan MJ, Lin XS, Zhang Y, J. Basic. Microbiol., 59, 368 (2019)
Balasubramanian RK, Colloids Surf. A: Physicochem. Eng. Asp., 455, 174 (2014)
Kim MN, Yoon MG, Polym. Degrad. Stabil., 95, 89 (2010)
Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Danila M, Jipa I, Fruth V, J. Polym. Environ., 19, 69 (2011)
Chiellini E, Corti A, D’Antone S, Solaro R, Prog. Polym. Sci, 28, 963 (2003)
Halima NB, RSC Adv., 6, 39823 (2016)
Suzuki T, Ichihara Y, Yamada M, Tonomura K, Agric. Biol. Chem., 37, 747 (1973)
Tsujiyama S, Nitta T, Maoka T, J. Biosci. Bioeng., 112(1), 58 (2011)
Bian HJ, Cao MF, Wen H, Tan ZL, Jia SR, Cui JD, Int. J. Biol. Macromol., 124, 10 (2019)
Ullah M, Weng CH, Li H, Sun W, Zhang H, Song AH, Zhu H, Environ. Technol., 39, 2056 (2018)
Shimao M, Tamogami T, Kishida S, Microbiology, 146, 649 (2000)
Wei YH, Fu J, Wu JY, Jia XY, Zhou YH, Li CD, Dong MX, Wang SS, Zhang J, Chen F, Appl. Eviron. Microbial., 84, e01898 (2018)
Yang Y, Zhang DX, Liu S, Jia DX, Du GC, Chen J, J. Ind. Microbiol. Biotechnol., 39, 99 (2012)
Jia DX, Li JH, Liu L, Zhang DX, Yang Y, Du GC, Chen J, Appl. Microbiol. Biotechnol., 97(3), 1113 (2013)
Tang B, Liao XY, Zhang DX, Li M, Li R, Yan KL, Du GC, Chen J, Polym. Degrad. Stabil., 95, 557 (2010)
Min L, Zhang DX, Du GC, Chen J, J. Microbiol. Biotechnol., 22, 220 (2012)
Ren SZ, Li CH, Jiao XB, Jia SR, Jiang YJ, Bilal M, Cui JD, Chem. Eng. J., 373, 1254 (2019)
Lin Z, Xiao Y, Wang L, Yin YQ, Zheng JN, Yang HH, Chen GN, RSC Adv., 4, 13888 (2014)
Ge J, Lei JD, Zare RN, Nat. Nanotechnol., 7(7), 428 (2012)
Lin Z, Xiao Y, Yin YQ, Hu WL, Liu W, Yang HH, ACS Appl. Mater. Interfaces, 6, 10775 (2014)
Somturk B, Hancer M, Ocsoy I, Ozdemir N, DALTON T., 44, 13845 (2015)
Zhang BL, Li PT, Zhang HP, Fan LL, Wang H, Li XJ, Tian L, Ali N, Ali Z, Zhang QY, RSC Adv., 6, 46702 (2016)
Cui JD, Zhao YM, Liu RL, Zhong C, Jia SR, Sci. Rep., 6, 27928 (2016)
Wu ZF, Li H, Zhu XJ, Li S, Wang Z, Wang L, Li ZQ, Ch Q, Catalyst, 7, 188 (2017)
Qian K, Wang H, Liu JM, Gao ST, Liu WT, Wan X, Zhang YY, Liu QS, Yin XY, New J. Chem., 42, 429 (2018)
Yu Y, Fei X, Tian J, Xu LQ, Wang XY, Wang Y, Colloids Surf. B: Biointerfaces, 130, 299 (2015)
Zhao M, Rong JH, Han J, Zhou Y, Li CM, Wang L, Mao YL, Wang Y, ACS Appl. Mater. Interfaces, 11, 31878 (2019)
Bradford MM, Anal. Biochem., 72, 248 (1976)
Finley JH, Anal. Chem., 33, 1925 (1961)
Escobar S, Velasco-Lozano S, Lu CH, Lin YF, Mesa M, Bernal C, Lopez-Gallego F, J. Mater. Chem. B, 5, 4478 (2017)
Lee SW, Cheon SA, Kim MI, Park TJ, J. Nanobiotechnol., 13, 54 (2015)
Yin UQ, Xiao Y, Lin G, Xiao Q, Lin Z, Cai ZW, J. Mater. Chem. B, 3, 2295 (2015)
Altinkaynak C, Yilmaz I, Koksal Z, Ozdemir H, Ocsoy I, Ozdemir N, Int. J. Biol. Macromol., 84, 402 (2016)
Zhang BL, Li PT, Zhang HP, Wang H, Li XJ, Tian L, Ali N, Ali Z, Zhang QY, Chem. Eng. J., 291, 287 (2016)
Baldemir A, Kose NB, Ildiz N, Ilgun S, Yusufbeyoglu S, Yilmaz V, Ocsoy I, RSC Adv., 7, 44303 (2017)
Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R, Chem. Soc. Rev., 42, 6290 (2013)
Yabuki S, Catalyst, 7, 36 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로