Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 11, 2019
Accepted February 19, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Formation of calcium carbonates from Ca(OH)2-H2O-supercritical CO2 using a rapid spraying method
Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
Korean Journal of Chemical Engineering, June 2020, 37(6), 1086-1096(11), 10.1007/s11814-020-0518-1
Download PDF
Abstract
Particle formation techniques using supercritical fluid are simple processes that can control particle size and morphology, although high-pressure is required. The purpose of this study was to investigate how the experimental conditions affect the extent and rate of CaCO3 conversion and the size and morphology of the precipitated CaCO3 from the carbonation tests with rapid spraying of reactants causing rapid depressurization of supercritical fluid. The relatively low temperature and pressure conditions (35 °C and 7.5MPa) resulted in low CaCO3 conversion efficiency (41.4-51.9%), high vaterite content (70-78%) of CaCO3, and smaller-sized particles. The relatively high temperature and pressure conditions (80 oC and 12.0MPa) resulted in high CaCO3 conversion efficiency (66.8-73.2%), high calcite content (50-80%) of CaCO3, and larger-sized particles. The particle size of solid products ranged between 20 and 180nm with approximately a peak of 100 nm in the particle size distribution (PSD) curve, irrespective of the test conditions; however, shorter reaction times led to smaller particles. The optimal conditions under which the extent of CaCO3 conversion and calcite content were maximum were 50 °C, 9.0MPa, and 1 h of reaction time (CaCO3 conversion: 92.9%; calcite content of CaCO3: 87%).
References
Sohnel O, Mullin JW, J. Cryst. Growth, 60, 239 (1982)
Leeuw NH, Parker SC, J. Phys. Chem., 102, 2914 (1998)
Lippmann F, Sedimentary carbonate minerals, Springer Science & Business Media, Berlin (1973).
Dickinson SR, Henderson GE, McGrath KM, J. Cryst. Growth, 244(3-4), 369 (2002)
Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727 (2014)
Domingo C, Loste E, Gomez-Morales J, Garcia-Carmona J, Fraile J, J. Supercrit. Fluids, 36(3), 202 (2006)
Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, J. Supercrit. Fluids, 52(3), 298 (2010)
Gu W, Bousfield DW, Tripp CP, J. Mater. Chem., 16, 3312 (2006)
Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J, J. Cryst. Growth, 308(1), 228 (2007)
Li J, Azevedo EG, Recent. Pat. Chem. Eng., 1, 157 (2008)
Lozowski D, Chem. Eng., 117, 15 (2010)
Regnault O, Lagneau V, Schneider H, Chem. Geol., 265, 113 (2009)
Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, Cryst. Growth Des, 52, 298 (2011)
Hawae P, Chusri N, Sumanatrakul P, Siripatana C, PACCON2015 (2015).
Mchugh M, Krukonis V, Supercritical fluid extraction: principles and practice, Butterworth, Stoneham (1986).
Debenedetti PG, AIChE J., 36, 1289 (1990)
Pane I, Hansen W, Cem. Concr. Res., 35, 1155 (2005)
Kontoyannis CG, Vagenas NV, Analyst, 125, 251 (2000)
Wu ZG, Wang J, Guo Y, Jia YR, Cryst. Res. Technol., 53, 170012 (2018)
Chen J, Xiang L, Powder Technol., 189(1), 64 (2009)
Niedermayr A, Kohler SJ, Dietzel M, Chem. Geol., 340, 105 (2013)
Chu DH, Vinoba M, Bhagiyalakshmi M, Baek IH, Nam SC, Yoon Y, Kim SH, Jeong SK, RSC Adv., 3, 21722 (2013)
Zhao T, Guo B, Zhang F, Sha F, Li Q, Zhang J, ACS Appl. Mater. Interfaces, 7, 15918 (2015)
Konopacka-Lyskawa D, Koscielska B, Karczewski J, Mater. Chem. Phys., 192, 13 (2017)
Jiang JX, Wu Y, Chen CJ, Wang XL, Zhao HK, Xu SS, Yang CC, Xiao BW, Adv. Powder Technol., 29(10), 2416 (2018)
Ding Y, Liu YY, Ren YY, Yan HX, Wang M, Wang D, Lu XY, Wang B, Fan TB, Guo HF, Powder Technol., 333, 410 (2018)
Wu ZG, Wang J, Guo Y, Jia YR, Cryst. Res. Technol., 53, 170012 (2018)
Zhang J, Zhao C, Zhou A, Yang C, Zhao L, Li Z, Constr. Build. Mater., 224, 815 (2019)
Pabst W, Gregorova E, ICP Prague 2007 (2007).
Merkus HG, Particle size measurements: fundamentals, practice, quality, Springer, Berlin (2012).
Goto S, Suenaga K, Kado T, Fukuhara M, J. Am. Ceram. Soc., 78, 2867 (1995)
Vance K, Falzone G, Pignatelli I, Bauchy M, Balonis M, Sant G, Ind. Eng. Chem. Res., 54(36), 8908 (2015)
Padanyi ZV, Solid State Commun., 8, 541 (1970)
Harris J, Mey I, Hajir M, Mondeshki M, Wolf SE, Cryst. Eng. Comm., 17, 36 (2015)
Spanos N, Koutsoukos PG, J. Cryst. Growth, 191, 783 (1998)
Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 276(3-4), 541 (2005)
Leeuw NH, Parker SC, J. Phys. Chem., 102, 2914 (1998)
Lippmann F, Sedimentary carbonate minerals, Springer Science & Business Media, Berlin (1973).
Dickinson SR, Henderson GE, McGrath KM, J. Cryst. Growth, 244(3-4), 369 (2002)
Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727 (2014)
Domingo C, Loste E, Gomez-Morales J, Garcia-Carmona J, Fraile J, J. Supercrit. Fluids, 36(3), 202 (2006)
Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, J. Supercrit. Fluids, 52(3), 298 (2010)
Gu W, Bousfield DW, Tripp CP, J. Mater. Chem., 16, 3312 (2006)
Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J, J. Cryst. Growth, 308(1), 228 (2007)
Li J, Azevedo EG, Recent. Pat. Chem. Eng., 1, 157 (2008)
Lozowski D, Chem. Eng., 117, 15 (2010)
Regnault O, Lagneau V, Schneider H, Chem. Geol., 265, 113 (2009)
Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, Cryst. Growth Des, 52, 298 (2011)
Hawae P, Chusri N, Sumanatrakul P, Siripatana C, PACCON2015 (2015).
Mchugh M, Krukonis V, Supercritical fluid extraction: principles and practice, Butterworth, Stoneham (1986).
Debenedetti PG, AIChE J., 36, 1289 (1990)
Pane I, Hansen W, Cem. Concr. Res., 35, 1155 (2005)
Kontoyannis CG, Vagenas NV, Analyst, 125, 251 (2000)
Wu ZG, Wang J, Guo Y, Jia YR, Cryst. Res. Technol., 53, 170012 (2018)
Chen J, Xiang L, Powder Technol., 189(1), 64 (2009)
Niedermayr A, Kohler SJ, Dietzel M, Chem. Geol., 340, 105 (2013)
Chu DH, Vinoba M, Bhagiyalakshmi M, Baek IH, Nam SC, Yoon Y, Kim SH, Jeong SK, RSC Adv., 3, 21722 (2013)
Zhao T, Guo B, Zhang F, Sha F, Li Q, Zhang J, ACS Appl. Mater. Interfaces, 7, 15918 (2015)
Konopacka-Lyskawa D, Koscielska B, Karczewski J, Mater. Chem. Phys., 192, 13 (2017)
Jiang JX, Wu Y, Chen CJ, Wang XL, Zhao HK, Xu SS, Yang CC, Xiao BW, Adv. Powder Technol., 29(10), 2416 (2018)
Ding Y, Liu YY, Ren YY, Yan HX, Wang M, Wang D, Lu XY, Wang B, Fan TB, Guo HF, Powder Technol., 333, 410 (2018)
Wu ZG, Wang J, Guo Y, Jia YR, Cryst. Res. Technol., 53, 170012 (2018)
Zhang J, Zhao C, Zhou A, Yang C, Zhao L, Li Z, Constr. Build. Mater., 224, 815 (2019)
Pabst W, Gregorova E, ICP Prague 2007 (2007).
Merkus HG, Particle size measurements: fundamentals, practice, quality, Springer, Berlin (2012).
Goto S, Suenaga K, Kado T, Fukuhara M, J. Am. Ceram. Soc., 78, 2867 (1995)
Vance K, Falzone G, Pignatelli I, Bauchy M, Balonis M, Sant G, Ind. Eng. Chem. Res., 54(36), 8908 (2015)
Padanyi ZV, Solid State Commun., 8, 541 (1970)
Harris J, Mey I, Hajir M, Mondeshki M, Wolf SE, Cryst. Eng. Comm., 17, 36 (2015)
Spanos N, Koutsoukos PG, J. Cryst. Growth, 191, 783 (1998)
Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 276(3-4), 541 (2005)