Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 7, 2019
Accepted February 27, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction
Yeonsun Sohn1
Dong-gun Kim1
Ji Ho Lee1
Sujin Lee1
In Seon Hwang1
Soo-Hyoung Lee1
Sung Jong Yoo2 3
Pil Kim1†
1School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Jeonbuk National University, JeonJu, Jeonbuk 54896, Korea 2Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea 3Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
kimpil1@jbnu.ac.kr
Korean Journal of Chemical Engineering, June 2020, 37(6), 938-945(8), 10.1007/s11814-020-0522-5
Download PDF
Abstract
We demonstrate that control of the defect level on carbon materials is effective for enhancing the oxygen reduction reaction (ORR) performance of nonprecious-metal catalysts. Vapor-grown carbon nanofiber (VGCNF) with high crystallinity and high electronic conductivity was chosen as the substrate of our ORR catalysts. To induce defects on the VGCNF, it was subjected to ball-milling for various controlled times, yielding BMx-VGCNF (x represents the ball-milling time, 0-6 h). The defect level introduced on the VGCNF was effectively regulated by controlling the ballmilling time. Although the density of defect sites increased with increasing ball-milling time, the surface area was highest in BM2-VGCNF. Nonprecious-metal ORR catalysts (BMx-Fe-VGCNF) were prepared by NH3 pyrolysis of Fe-ionadsorbed BMx-VGCNF. The ball-milling of VGCNF was effective to introduce nitrogen onto the catalyst. In particular, the controlled ball-milling was important to generate highly active sites on the catalyst surface. Among the catalysts studied, BM2-Fe-VGCNF exhibited the best ORR performance, which was 2.5-times greater than that of BMx-Fe-VGCNF (x=4, 6).
Keywords
References
Sopian K, Daud WRW, Renew. Energy, 31(5), 719 (2006)
Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
Markovic NM, Grgur BN, Ross PN, J. Phys. Chem. B, 101(27), 5405 (1997)
Steele BCH, Heinzel A, Nature, 414, 345 (2001)
Wee JH, Lee KY, Kim SH, J. Power Sources, 165(2), 667 (2007)
Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
Lefevre M, Dodelet JP, Bertrand P, J. Phys. Chem. B, 106(34), 8705 (2002)
Wagner AJ, Wolfe GM, Fairbrother DH, Appl. Surf. Sci., 219(3-4), 317 (2003)
Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti C, Tadjeddine A, Dartyge E, Fontaine A, Frahm R, J. Phys. IV, 7, 887 (1997)
Matter PH, Zhang L, Ozkan US, J. Catal., 239(1), 83 (2006)
Mustain WE, Prakash J, J. Power Sources, 170(1), 28 (2007)
Adcock PA, Pacheco SV, Norman KM, Uribe FA, J. Electrochem. Soc., 152(2), A459 (2005)
Tripkovi V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J, Chem. Cat. Chem., 4, 228 (2012)
Samiee L, Shoghi F, Vinu A, Appl. Surf. Sci., 265, 214 (2013)
Ham DJ, Lee JS, Energies, 2, 873 (2009)
Rosenbaum M, Zhao F, Schroder U, Scholz F, Angew. Chem.-Int. Edit., 45, 6658 (2006)
Stariha S, Serov A, Artyushkova K, Atanassov P, J. Electrochem. Soc., 37, 1295 (2015)
Gumeci C, Leonard N, Halevi B, Barton SC, J. Electrochem. Soc., 26, 1579 (2015)
Atanassov P, Serov A, Artyushkova K, Kiefer B, J. Electrochem. Soc., 21, 950 (2014)
Zhang J, Dai L, ACS Catal., 5, 7244 (2015)
Kim DW, Li O, Saito N, Phys. Chem. Chem. Phys., 17, 407 (2015)
Zhang H, Osgood H, Xie X, Shao Y, Wu G, Nano Energy, 31, 331 (2017)
Chung Hoon T., Cullen David A., Higgins Drew, Sneed Brian T., Holby Edward F., More Karren L., Zelenay Piotr, Science, 357(6350), 479 (2017)
Holby EF, Wu G, Zelenay G, Taylor CD, J. Phys. Chem. C, 118, 14388 (2014)
Charreteur F, Jaouen F, Ruggeri S, Dodelet JP, Electrochim. Acta, 53(6), 2925 (2008)
Ren G, Lu X, Li Y, Zhu Y, Dai L, ACS Appl. Mater. Interfaces, 8, 4118 (2016)
Shen H, Thomas T, Rasaki SA, Saad A, Hu C, Wang J, Yang M, Electrochem. Energy Rev., 2, 252 (2019)
Wang Q, Zhou ZY, Lai YJ, You Y, Liu JG, Wu XL, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun SG, J. Am. Chem. Soc., 136(31), 10882 (2014)
Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei ZD, Wan LJ, J. Am. Chem. Soc., 138(10), 3570 (2016)
Wu Z, Xu X, Hu B, Liang HW, Lin Y, Chen LF, Yu SH, Angew. Chem.-Int. Edit., 54, 8179 (2015)
Yasuda S, Furuya A, Uchibori Y, Kim J, Murakoshi K, Adv. Funct. Mater., 26(5), 738 (2016)
Feng L, Xie N, Zhong J, Materials, 7, 3919 (2014)
Liu D, Long Y, ACS Appl. Mater. Interfaces, 7, 24063 (2015)
Men B, Sun Y, Liu J, Tang Y, Chen Y, Wan P, Pan J, ACS Appl. Mater. Interfaces, 8, 19533 (2016)
Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Chen Y, Carbon, 57, 515 (2013)
Johra FT, Lee JW, Jung WG, J. Ind. Eng. Chem., 20(5), 2883 (2014)
Gao X, Yokota N, Oda H, Tanaka S, Hokamoto K, Chen P, Crystals, 8, 104 (2018)
Proietti E, Ruggeri S, Dodelet JP, J. Electrochem. Soc., 155(4), B340 (2008)
Lefevre M, Dodelet JP, Electrochim. Acta, 53(28), 8269 (2008)
Liu G, Li XG, Ganesan P, Popov BN, Appl. Catal. B: Environ., 93(1-2), 156 (2009)
Wu G, More KL, Johnston CM, Zelenay P, Science, 332(6028), 443 (2011)
Hu Y, Jensen JO, Zhang W, Martin S, Chenitz R, Pan C, Li Q, J. Mater. Chem. Assn, 3, 1752 (2015)
Yang WX, Liu XJ, Yue XY, Jia JB, Guo SJ, J. Am. Chem. Soc., 137(4), 1436 (2015)
Niu YL, Huang XQ, Hu WH, J. Power Sources, 332, 305 (2016)
Artyushkova K, Matanovic I, Halevi B, Atanassov P, J. Phys. Chem. C, 121, 2836 (2017)
Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
Markovic NM, Grgur BN, Ross PN, J. Phys. Chem. B, 101(27), 5405 (1997)
Steele BCH, Heinzel A, Nature, 414, 345 (2001)
Wee JH, Lee KY, Kim SH, J. Power Sources, 165(2), 667 (2007)
Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
Lefevre M, Dodelet JP, Bertrand P, J. Phys. Chem. B, 106(34), 8705 (2002)
Wagner AJ, Wolfe GM, Fairbrother DH, Appl. Surf. Sci., 219(3-4), 317 (2003)
Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti C, Tadjeddine A, Dartyge E, Fontaine A, Frahm R, J. Phys. IV, 7, 887 (1997)
Matter PH, Zhang L, Ozkan US, J. Catal., 239(1), 83 (2006)
Mustain WE, Prakash J, J. Power Sources, 170(1), 28 (2007)
Adcock PA, Pacheco SV, Norman KM, Uribe FA, J. Electrochem. Soc., 152(2), A459 (2005)
Tripkovi V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J, Chem. Cat. Chem., 4, 228 (2012)
Samiee L, Shoghi F, Vinu A, Appl. Surf. Sci., 265, 214 (2013)
Ham DJ, Lee JS, Energies, 2, 873 (2009)
Rosenbaum M, Zhao F, Schroder U, Scholz F, Angew. Chem.-Int. Edit., 45, 6658 (2006)
Stariha S, Serov A, Artyushkova K, Atanassov P, J. Electrochem. Soc., 37, 1295 (2015)
Gumeci C, Leonard N, Halevi B, Barton SC, J. Electrochem. Soc., 26, 1579 (2015)
Atanassov P, Serov A, Artyushkova K, Kiefer B, J. Electrochem. Soc., 21, 950 (2014)
Zhang J, Dai L, ACS Catal., 5, 7244 (2015)
Kim DW, Li O, Saito N, Phys. Chem. Chem. Phys., 17, 407 (2015)
Zhang H, Osgood H, Xie X, Shao Y, Wu G, Nano Energy, 31, 331 (2017)
Chung Hoon T., Cullen David A., Higgins Drew, Sneed Brian T., Holby Edward F., More Karren L., Zelenay Piotr, Science, 357(6350), 479 (2017)
Holby EF, Wu G, Zelenay G, Taylor CD, J. Phys. Chem. C, 118, 14388 (2014)
Charreteur F, Jaouen F, Ruggeri S, Dodelet JP, Electrochim. Acta, 53(6), 2925 (2008)
Ren G, Lu X, Li Y, Zhu Y, Dai L, ACS Appl. Mater. Interfaces, 8, 4118 (2016)
Shen H, Thomas T, Rasaki SA, Saad A, Hu C, Wang J, Yang M, Electrochem. Energy Rev., 2, 252 (2019)
Wang Q, Zhou ZY, Lai YJ, You Y, Liu JG, Wu XL, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun SG, J. Am. Chem. Soc., 136(31), 10882 (2014)
Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei ZD, Wan LJ, J. Am. Chem. Soc., 138(10), 3570 (2016)
Wu Z, Xu X, Hu B, Liang HW, Lin Y, Chen LF, Yu SH, Angew. Chem.-Int. Edit., 54, 8179 (2015)
Yasuda S, Furuya A, Uchibori Y, Kim J, Murakoshi K, Adv. Funct. Mater., 26(5), 738 (2016)
Feng L, Xie N, Zhong J, Materials, 7, 3919 (2014)
Liu D, Long Y, ACS Appl. Mater. Interfaces, 7, 24063 (2015)
Men B, Sun Y, Liu J, Tang Y, Chen Y, Wan P, Pan J, ACS Appl. Mater. Interfaces, 8, 19533 (2016)
Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Chen Y, Carbon, 57, 515 (2013)
Johra FT, Lee JW, Jung WG, J. Ind. Eng. Chem., 20(5), 2883 (2014)
Gao X, Yokota N, Oda H, Tanaka S, Hokamoto K, Chen P, Crystals, 8, 104 (2018)
Proietti E, Ruggeri S, Dodelet JP, J. Electrochem. Soc., 155(4), B340 (2008)
Lefevre M, Dodelet JP, Electrochim. Acta, 53(28), 8269 (2008)
Liu G, Li XG, Ganesan P, Popov BN, Appl. Catal. B: Environ., 93(1-2), 156 (2009)
Wu G, More KL, Johnston CM, Zelenay P, Science, 332(6028), 443 (2011)
Hu Y, Jensen JO, Zhang W, Martin S, Chenitz R, Pan C, Li Q, J. Mater. Chem. Assn, 3, 1752 (2015)
Yang WX, Liu XJ, Yue XY, Jia JB, Guo SJ, J. Am. Chem. Soc., 137(4), 1436 (2015)
Niu YL, Huang XQ, Hu WH, J. Power Sources, 332, 305 (2016)
Artyushkova K, Matanovic I, Halevi B, Atanassov P, J. Phys. Chem. C, 121, 2836 (2017)