Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 6, 2019
Accepted February 27, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Levulinic acid production through two-step acidic and thermal treatment of food waste using dilute hydrochloric acid
Department of Chemical Engineering and Interagency Convergence Energy on New Biomass Industry, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do 17579, Korea 1School of Food Biotechnology and Chemical Engineering, Research Center of Chemical Technology, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do 17579, Korea
bhum11@hknu.ac.kr
Korean Journal of Chemical Engineering, July 2020, 37(7), 1149-1156(8), 10.1007/s11814-020-0521-6
Download PDF
Abstract
This research investigated the concept of a two-step acidic and thermal treatment for glucose extraction and levulinic acid (LA) production from food waste using dilute hydrochloric acid (DHA) as a catalyst, and subsequently analyzed the properties of the resulting humins. Glucose extraction was performed under various reaction conditions (reaction temperature range: 120-190 °C, DHA concentration range: 0.2-0.5% v/v); the glucose extraction yield of the acidic treatment step reached 83.17% under the optimal conditions (150 °C in 0.5% DHA). LA production was achieved during the thermal treatment step, which was investigated using two independent experiments to determine the influence of the reaction conditions (reaction time: 5-140min, concentration factor: 1.5-3.0, reaction temperature: 160-190 °C). The LA production process was affected by the concentration factor and the reaction temperature due to the low pH of solution and the rapid reaction rate, respectively. The thermal stability of the humins was highest at a concentration factor of 3.0 because of the 13.07 C/H ratio of the humins.
References
Baugh KD, McCarty PL, Biotechnol. Bioeng., 31, 50 (1988)
Brautigam KR, Jorissen J, Priefer C, Waste Manage. Res., 32, 683 (2014)
Caretto A, Perosa A, ACS Sustainable Chem. Eng., 1, 989 (2013)
Cherubini F, Energy Conv. Manag., 51(7), 1412 (2010)
Das SP, Ravindran R, Ahmed S, Das D, Goyal D, Fontes CMGA, Goyal A, Appl. Biochem. Biotechnol., 167(6), 1475 (2012)
Esteban J, Ladero M, Int. J. Food Sci. Technol., 53, 1095 (2018)
Fitzpatrick SW, ACS Symp. Ser., 921, 271 (2006)
Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH, Chem. Eng. J., 328, 246 (2017)
Girisuta B, Janssen LPBM, Heeres HJ, Chem. Eng. Res. Des., 84(A5), 339 (2006)
Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M, Bioresour. Technol., 93(3), 279 (2004)
Hayes DJ, Fitzpatrick S, Hayes MH, Ross JR, Biorefineries:Ind. Processes Prod., 1, 139 (2006)
Heltzel J, Patil SK, Lund CR, Reaction pathways and mechanisms in thermocatalytic biomass conversion II, Springer, Singapore, 105 (2016).
Horvat J, Klaic B, Metelko B, Sunjic V, Croat. Chemica. Acta, 59, 429 (1986)
Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT, Green Chem., 10, 238 (2008)
Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG, Bioresour. Technol., 225, 183 (2017)
Ji H, Dong C, Yang G, Pang Z, BioResources, 14, 725 (2019)
Kim SJ, Kwon HS, Kim GH, Um BH, Ind. Crop. Prod., 67, 395 (2015)
Kim YS, Jang JY, Park SJ, Um BH, Waste Manage., 74, 231 (2018)
Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C, Ind. Crop. Prod., 130, 184 (2019)
Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115 (2018)
Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745 (2011)
Patil SKR, Heltzel J, Lund CRF, Energy Fuels, 26(8), 5281 (2012)
Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
Rackemann DW, Doherty WO, Biofuels, Bioprod. Biorefin., 5, 198 (2011)
Rackemann DW, Bartley JP, Doherty WO, Ind. Crop. Prod., 52, 46 (2014)
Gong C, Wei J, Tang X, Zeng X, Sun Y, Lin L, Korean J. Chem. Eng., 36(5), 740 (2019)
Rasmussen H, Sørensen HR, Meyer AS, Carbohydr. Res., 385, 36 (2014)
Ravindran R, Jaiswal AK, Trends Biotechnol., 34, 58 (2016)
Kim TH, Jeon YJ, Oh KK, Kim TH, Korean J. Chem. Eng., 30(6), 1339 (2013)
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2006).
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, National Renewable Energy Lab, Golden, CO, USA (2010).
Sumerskii IV, Krutov SM, Zarubin MY, Russ. J. Appl. Chem., 83, 320 (2010)
Trivedi J, Bhonsle AK, Atray N, Academic Press., 19, 427 (2020)
Tulaphol S, Hossain MA, Rahaman MS, Liu LY, Phung TK, Renneckar S, Sathitsuksanoh N, Energy Fuels, 34, 1764 (2019)
Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V, Vlachos DG, Green Chem., 18, 1983 (2016)
Um BH, Karim MN, Henk LL, Appl. Biochem. Biotechnol., 105, 115 (2003)
Um BH, van Walsum GP, Appl. Biochem. Biotechnol., 168(2), 406 (2012)
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
Weingarten R, Cho J, Conner WC, Huber GW, Green Chem., 12, 1423 (2012)
Weingarten R, Cho J, Xing R, Conner WC, Huber GW, ChemSusChem., 5, 1280 (2012)
Weingarten R, Conner WC, Huber GW, Energy Environ. Sci., 5, 7559 (2012)
Werpy T, Petersen G, National Renewable Energy Lab, Golden, CO, USA (2004).
Xing R, Qi W, Huber GW, Energy Environ. Sci., 4, 2193 (2011)
Yan K, Jarvis C, Gu J, Yan Y, Renew. Sust. Energ. Rev., 51, 986 (2015)
Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Dong Y, Ind. Crop. Prod., 46, 205 (2013)
Brautigam KR, Jorissen J, Priefer C, Waste Manage. Res., 32, 683 (2014)
Caretto A, Perosa A, ACS Sustainable Chem. Eng., 1, 989 (2013)
Cherubini F, Energy Conv. Manag., 51(7), 1412 (2010)
Das SP, Ravindran R, Ahmed S, Das D, Goyal D, Fontes CMGA, Goyal A, Appl. Biochem. Biotechnol., 167(6), 1475 (2012)
Esteban J, Ladero M, Int. J. Food Sci. Technol., 53, 1095 (2018)
Fitzpatrick SW, ACS Symp. Ser., 921, 271 (2006)
Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH, Chem. Eng. J., 328, 246 (2017)
Girisuta B, Janssen LPBM, Heeres HJ, Chem. Eng. Res. Des., 84(A5), 339 (2006)
Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M, Bioresour. Technol., 93(3), 279 (2004)
Hayes DJ, Fitzpatrick S, Hayes MH, Ross JR, Biorefineries:Ind. Processes Prod., 1, 139 (2006)
Heltzel J, Patil SK, Lund CR, Reaction pathways and mechanisms in thermocatalytic biomass conversion II, Springer, Singapore, 105 (2016).
Horvat J, Klaic B, Metelko B, Sunjic V, Croat. Chemica. Acta, 59, 429 (1986)
Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT, Green Chem., 10, 238 (2008)
Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG, Bioresour. Technol., 225, 183 (2017)
Ji H, Dong C, Yang G, Pang Z, BioResources, 14, 725 (2019)
Kim SJ, Kwon HS, Kim GH, Um BH, Ind. Crop. Prod., 67, 395 (2015)
Kim YS, Jang JY, Park SJ, Um BH, Waste Manage., 74, 231 (2018)
Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C, Ind. Crop. Prod., 130, 184 (2019)
Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115 (2018)
Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745 (2011)
Patil SKR, Heltzel J, Lund CRF, Energy Fuels, 26(8), 5281 (2012)
Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
Rackemann DW, Doherty WO, Biofuels, Bioprod. Biorefin., 5, 198 (2011)
Rackemann DW, Bartley JP, Doherty WO, Ind. Crop. Prod., 52, 46 (2014)
Gong C, Wei J, Tang X, Zeng X, Sun Y, Lin L, Korean J. Chem. Eng., 36(5), 740 (2019)
Rasmussen H, Sørensen HR, Meyer AS, Carbohydr. Res., 385, 36 (2014)
Ravindran R, Jaiswal AK, Trends Biotechnol., 34, 58 (2016)
Kim TH, Jeon YJ, Oh KK, Kim TH, Korean J. Chem. Eng., 30(6), 1339 (2013)
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2006).
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, National Renewable Energy Lab, Golden, CO, USA (2010).
Sumerskii IV, Krutov SM, Zarubin MY, Russ. J. Appl. Chem., 83, 320 (2010)
Trivedi J, Bhonsle AK, Atray N, Academic Press., 19, 427 (2020)
Tulaphol S, Hossain MA, Rahaman MS, Liu LY, Phung TK, Renneckar S, Sathitsuksanoh N, Energy Fuels, 34, 1764 (2019)
Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V, Vlachos DG, Green Chem., 18, 1983 (2016)
Um BH, Karim MN, Henk LL, Appl. Biochem. Biotechnol., 105, 115 (2003)
Um BH, van Walsum GP, Appl. Biochem. Biotechnol., 168(2), 406 (2012)
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
Weingarten R, Cho J, Conner WC, Huber GW, Green Chem., 12, 1423 (2012)
Weingarten R, Cho J, Xing R, Conner WC, Huber GW, ChemSusChem., 5, 1280 (2012)
Weingarten R, Conner WC, Huber GW, Energy Environ. Sci., 5, 7559 (2012)
Werpy T, Petersen G, National Renewable Energy Lab, Golden, CO, USA (2004).
Xing R, Qi W, Huber GW, Energy Environ. Sci., 4, 2193 (2011)
Yan K, Jarvis C, Gu J, Yan Y, Renew. Sust. Energ. Rev., 51, 986 (2015)
Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Dong Y, Ind. Crop. Prod., 46, 205 (2013)