Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 18, 2019
Accepted February 17, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fabrication of magnetic cobalt ferrite nanocomposites: an advanced method of removal of toxic dichromate ions from electroplating wastewater
Department of Chemical Engineering, IIT Roorkee, Roorkee, India 24766
bverma@ch.iitr.ac.in
Korean Journal of Chemical Engineering, July 2020, 37(7), 1157-1165(9), 10.1007/s11814-020-0516-3
Download PDF
Abstract
Magnetic cobalt ferrites (CoFe2O4) were synthesized by sol-gel method. These nanoparticles were ultra-sonicated with surface modified multi-walled carbon nanotubes (SM-MWCNTs) to form CoFe2O4/SM-MWCNTs nanocomposites. The as-prepared materials were used as an adsorbent for the removal of hexavalent chromium (Cr(VI)) arising from the presence of dichromate ions (Cr2O7 2) in the electroplating effluent. The synthesized nanocomposites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transmission infrared spectroscopy (FT-IR), raman spectroscopy, thermo-gravimetric analysis (TGA), and zeta analyzer. The effect of the environmental chemistry of the solution on the adsorption has been discussed. The adsorption isotherm of Cr(VI) adsorption onto the as-synthesized CoFe2O4/SM-MWCNTs best fitted the Langmuir Adsorption Isotherm model. The high adsorption capacity of 100mg/g was achieved at 40°C under optimized conditions. Besides, the magnetic properties of synthesized CoFe2O4/SM-MWCNTs nanocomposites allow them to separate from the aqueous solution by magnetization easily. Even after seven consecutive adsorption-desorption cycles, the CoFe2O4/SM-MWCNTs nanocomposites presented an efficiency loss of less than 20% for the removal of Cr(VI) ions. This study clearly shows that cobalt nanocomposites are promising candidates in environmental applications.
References
Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X, Wang X, Chemosphere, 195, 351 (2018)
Iijima S, Nature, 354, 56 (1991)
Chang H, Wu H, Energy Environ. Sci., 6(12), 3483 (2013)
Sepahvand R, Mohamadzade R, J. Sci. Islam. Repub. Iran, 22(2), 177 (2011)
Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi M, Prato M, J. Mater. Chem., 17, 2679 (2007)
Zheng H, Kreisel J, Chu Y, Ramesh R, Salamanca-riba L, Appl. Phys. Lett., 90, 113113 (2007)
Diva TN, Zare K, Taleshi F, Yousefi M, J. Nanostructure Chem., 7, 273 (2017)
Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK, Chem. Eng. J., 279, 344 (2015)
Gaikwad MS, Balomajumder C, J. Environ. Chem. Eng., 5(1), 45 (2017)
Neto JOM, Bellato CR, Silva DC, Chemosphere, 218, 391 (2019)
Chen W, Lu Z, Xiao B, Gu P, Yao W, Xing J, Asiri AM, Alamry KA, Wang X, Wang S, J. Clean Prod., 211, 1250 (2019)
Mourao PAM, Carrott PJM, Carrott MMLR, Carbon, 44(12), 2422 (2006)
Li N, Zheng M, Chang X, Ji G, Lu H, Xue L, Pan L, Cao J, J. Solid State Chem., 184, 953 (2011)
Zhao TK, Ji XL, Guo XN, Jin WB, Dang AL, Li H, Li TH, Chem. Phys. Lett., 653, 202 (2016)
Luo C, Tian Z, Yang B, Zhang L, Yan S, Chem. Eng. J., 234, 266 (2013)
Hu J, Chen C, Zhu X, Wang X, J. Hazard. Mater., 162(2), 1542 (2009)
Tang L, Yang GD, Zeng GM, Cai Y, Li SS, Zhou YY, Pang Y, Liu YY, Zhang Y, Luna B, Chem. Eng. J., 239, 114 (2014)
Hu J, Chen G, Lo IMC, Water Res., 39(18), 4528 (2005)
Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK, Chem. Eng. J., 279, 344 (2015)
Wajima T, Umeta Y, Narita S, Sugawara K, DES, 249(1), 323 (2009)
Argun ME, Dursun S, Ozdemir C, Karatas M, J. Hazard. Mater., 141(1), 77 (2007)
Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263 (2002)
Bhatnagar A, Kumar E, Sillanpaa M, Chem. Eng. J., 163(3), 317 (2010)
Paul ML, Samuel J, Das SB, Swaroop S, Chandrasekaran N, Mukherjee A, Ind. Eng. Chem. Res., 51, 46 (2012)
Milena R, Buchtov H, Jano P, Water Res., 37, 4938 (2003)
Yang XD, Wan YS, Zheng YL, He F, Yu ZB, Huang J, Wang HL, Ok YS, Jiang YS, Gao B, Chem. Eng. J., 366, 608 (2019)
Chen SH, Yue QY, Gao BY, Xu X, J. Colloid Interface Sci., 349(1), 256 (2010)
Cabrera C, Gabaldon C, Marzal P, J. Chem. Technol. Biotechnol., 80(4), 477 (2005)
Wang P, Du ML, Zhu H, Bao SY, Yang TT, Zou ML, J. Hazard. Mater., 286, 533 (2015)
Huang JN, Cao YH, Shao J, Peng XF, Guo ZH, Ind. Eng. Chem. Res., 56(38), 10689 (2017)
Enniya I, Rghioui L, Jourani A, Sustain. Chem. Pharm., 7, 9 (2018)
Rajput S, Pittman CU, Mohan D, J. Colloid Interface Sci., 468, 334 (2016)
Lee CG, Lee S, Park JA, Park C, Lee SJ, Kim SB, An B, Yun ST, Lee SH, Choi JW, Chemosphere, 166, 203 (2017)
Vilela PB, Dalalibera A, Duminelli EC, Becegato VA, Paulino AT, Environ. Sci. Pollut. Res., 26(28), 28481 (2019)
Iijima S, Nature, 354, 56 (1991)
Chang H, Wu H, Energy Environ. Sci., 6(12), 3483 (2013)
Sepahvand R, Mohamadzade R, J. Sci. Islam. Repub. Iran, 22(2), 177 (2011)
Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi M, Prato M, J. Mater. Chem., 17, 2679 (2007)
Zheng H, Kreisel J, Chu Y, Ramesh R, Salamanca-riba L, Appl. Phys. Lett., 90, 113113 (2007)
Diva TN, Zare K, Taleshi F, Yousefi M, J. Nanostructure Chem., 7, 273 (2017)
Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK, Chem. Eng. J., 279, 344 (2015)
Gaikwad MS, Balomajumder C, J. Environ. Chem. Eng., 5(1), 45 (2017)
Neto JOM, Bellato CR, Silva DC, Chemosphere, 218, 391 (2019)
Chen W, Lu Z, Xiao B, Gu P, Yao W, Xing J, Asiri AM, Alamry KA, Wang X, Wang S, J. Clean Prod., 211, 1250 (2019)
Mourao PAM, Carrott PJM, Carrott MMLR, Carbon, 44(12), 2422 (2006)
Li N, Zheng M, Chang X, Ji G, Lu H, Xue L, Pan L, Cao J, J. Solid State Chem., 184, 953 (2011)
Zhao TK, Ji XL, Guo XN, Jin WB, Dang AL, Li H, Li TH, Chem. Phys. Lett., 653, 202 (2016)
Luo C, Tian Z, Yang B, Zhang L, Yan S, Chem. Eng. J., 234, 266 (2013)
Hu J, Chen C, Zhu X, Wang X, J. Hazard. Mater., 162(2), 1542 (2009)
Tang L, Yang GD, Zeng GM, Cai Y, Li SS, Zhou YY, Pang Y, Liu YY, Zhang Y, Luna B, Chem. Eng. J., 239, 114 (2014)
Hu J, Chen G, Lo IMC, Water Res., 39(18), 4528 (2005)
Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK, Chem. Eng. J., 279, 344 (2015)
Wajima T, Umeta Y, Narita S, Sugawara K, DES, 249(1), 323 (2009)
Argun ME, Dursun S, Ozdemir C, Karatas M, J. Hazard. Mater., 141(1), 77 (2007)
Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263 (2002)
Bhatnagar A, Kumar E, Sillanpaa M, Chem. Eng. J., 163(3), 317 (2010)
Paul ML, Samuel J, Das SB, Swaroop S, Chandrasekaran N, Mukherjee A, Ind. Eng. Chem. Res., 51, 46 (2012)
Milena R, Buchtov H, Jano P, Water Res., 37, 4938 (2003)
Yang XD, Wan YS, Zheng YL, He F, Yu ZB, Huang J, Wang HL, Ok YS, Jiang YS, Gao B, Chem. Eng. J., 366, 608 (2019)
Chen SH, Yue QY, Gao BY, Xu X, J. Colloid Interface Sci., 349(1), 256 (2010)
Cabrera C, Gabaldon C, Marzal P, J. Chem. Technol. Biotechnol., 80(4), 477 (2005)
Wang P, Du ML, Zhu H, Bao SY, Yang TT, Zou ML, J. Hazard. Mater., 286, 533 (2015)
Huang JN, Cao YH, Shao J, Peng XF, Guo ZH, Ind. Eng. Chem. Res., 56(38), 10689 (2017)
Enniya I, Rghioui L, Jourani A, Sustain. Chem. Pharm., 7, 9 (2018)
Rajput S, Pittman CU, Mohan D, J. Colloid Interface Sci., 468, 334 (2016)
Lee CG, Lee S, Park JA, Park C, Lee SJ, Kim SB, An B, Yun ST, Lee SH, Choi JW, Chemosphere, 166, 203 (2017)
Vilela PB, Dalalibera A, Duminelli EC, Becegato VA, Paulino AT, Environ. Sci. Pollut. Res., 26(28), 28481 (2019)