ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 20, 2019
Accepted March 18, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Rapid removal of low concentrations of mercury from wastewater using coal gasification slag

College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China 1State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, Yinchuan 750021, China 2Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
Korean Journal of Chemical Engineering, July 2020, 37(7), 1166-1173(8), 10.1007/s11814-020-0546-x
downloadDownload PDF

Abstract

Coal gasification slag (CGS) is a carbon-containing solid waste used as an adsorbent to remove low concentrations of mercury from wastewater in a series of batch tests to assess its adsorption properties and safe storage. The results showed that the adsorption of mercury on CGS was a very rapid and efficient process, and adsorption equilibrium was reached in only 10-40 min. A pseudo-second-order kinetics model provided a better fit to the equilibrium data. The adsorption capacity on CGS was just slightly below the value of active carbon. CGS showed the highest mercury removal efficiency at a solution pH of 4. Although the presence of other metal cations and anions affected the adsorption, CGS showed good selectivity for mercury ions. The adsorption of mercury was not affected by low concentrations of Cr3+ or Cu2+. The negative interference of anions on the removal efficiency followed the order: Cl?>H2PO4 > CO3 2. The adsorption mechanism related to the functional groups included ion exchange, precipitation, coordination complexation, and surface complexation. Mercury adsorbed on CGS leached very slowly in weakly acidic or basic solution. All results of the study indicate that CGS is an economical and safe adsorbent for potential industrial applications.

References

Huang N, Zhai LP, Xu H, Jiang DL, J. Am. Chem. Soc., 139(6), 2428 (2017)
Davodi B, Ghorbani M, Jahangiri M, J. Taiwan Inst. Chem. Eng., 80, 363 (2017)
Liu L, Ding L, Wu X, Deng F, Ind. Eng. Chem. Res., 55, 51 (2016)
Wang P, Wang R, Wang C, Qian J, J. Comput. Theor. Nanosci., 13, 5714 (2016)
Hadi P, To MH, Hui CW, Lin CSK, McKay G, Water Res., 73, 37 (2015)
Cox M, El-Shafey E, Pichugin AA, Appleton Q, J. Chem. Technol. Biotechnol., 75(6), 427 (2000)
Wang Z, Xu J, Hu Y, Zhao H, Zhou J, Liu Y, Lou Z, Xiu XH, J. Taiwan Inst. Chem. Eng., 60, 394 (2015)
Ackerman JT, Kraus TE, Fleck JA, David PK, William RH, Sandra MB, Herzog MP, Hartman CA, Bachand PAM, Environ. Sci. Technol., 49, 6304 (2015)
Yan X, Meng J, Hu X, Feng R, Zhou M, J. Sol-Gel Sci. Technol., 89, 617 (2019)
Zhang D, Yin Y, Liu J, Chem. Speciat. Bioavailab., 29, 161 (2017)
Li B, Zhang Y, Ma D, Shi Z, Ma S, Nat. Commun., 5, 5537 (2014)
Lone S, Yoon DH, Lee H, Cheong IW, Environ. Sci.: Water Res. Technol., 5, 83 (2019).
Attari M, Bukhari SS, Kazemian H, Rohani S, J. Environ. Chem. Eng., 5, 391 (2016)
Ecer U, Yilmaz S, Sahan T, Water Sci. Technol., 78, 1348 (2018)
Yilmaz S, Zengin A, Akbulut Y, Sahan T, Environ. Sci. Pollut. Res., 26, 20454 (2019)
Yilmaz S, Zengin A, Ecer U, Sahan T, Colloids Surf. A: Physicochem. Eng. Asp., 583, 123961 (2019)
Uzun Y, Sahan T, Arch. Environ. Prot., 43, 37 (2017)
Wang S, Chem. Ind. Eng. Prog., 35, 653 (2016)
Xu SQ, Zhou ZJ, Gao XX, Yu GS, Gong X, Fuel Process. Technol., 90(9), 1062 (2009)
Wu SY, Huang S, Ji LY, Wu YQ, Gao JS, Fuel, 122, 67 (2014)
Gu Y, Qiao X, Microporous Mesoporous Mater., 276, 303 (2019)
Liu S, Chen X, Ai W, Wei C, J. Clean Prod., 212, 1062 (2019)
Sun Y, Lv D, Zhou J, Chemosphere, 185, 452 (2017)
Park JH, Wang J, Zhou B, Mikhael JER, DeLaune RD, Environ. Pollut., 244, 627 (2019)
Yılmaz S, Sahan T, Karabakan A, Korean J. Chem. Eng., 34(8), 2225 (2017)
Sun DH, Zhang XD, Wu YD, Liu X, J. Hazard. Mater., 181(1-3), 335 (2010)
Wang Y, Sun D, Korean J. Chem. Eng., 32(7), 1323 (2015)
Chang MY, Juang RS, Colloids Surf. A: Physicochem. Eng. Asp., 269, 35 (2005)
Faulconer EK, Mazyck DW, J. Environ. Chem. Eng., 5, 2879 (2017)
Zhang D, Huo P, Liu W, Chinese J. Chem. Eng., 24, 446 (2016)
Li ZC, Wu LY, Liu HJ, Lan HC, Qu JH, Chem. Eng. J., 228, 925 (2013)
Ma LJ, Islam SM, Xiao CL, Zhao J, Liu HY, Yuan MW, Sun GB, Li HF, Ma SL, Kanatzidis MG, J. Am. Chem. Soc., 139(36), 12745 (2017)
Azizi A, Moniri E, Hassani AH, Panahi HA, Miralinaghi M, Microchem. J., 145, 559 (2019)
Li Y, Xiao HN, Pan YF, Zhang M, Jin YC, J. Hazard. Mater., 377, 88 (2019)
Liu C, Peng J, Zhang L, Wang S, Ju S, Liu C, J. Clean Prod., 196, 109 (2018)
Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479 (2018)
Tan GC, Sun WL, Xu YR, Wang HY, Xu N, Bioresour. Technol., 211, 727 (2016)
Khoramzadeh AE, Nasemejad B, Halladj R, J. Taiwan Inst. Chem. E., 44, 266 (2013)
Gupta NK, Gupta A, FlatChem., 11, 1 (2018)
Aghdam K, Panahi HA, Alaei E, Hasani AH, Moniri E, Environ. Monit. Assess., 188, 223 (2016)
Muliwa AM, Onyango MS, Maity A, Ochieng A, Water Sci. Technol., 75, 2841 (2017)
AlOmar MK, Alsaadi MA, Jassam TM, Akib S, Hashim MA, J. Colloid Interface Sci., 497, 413 (2017)
GB8978-1996, Integrated wastewater discharge standard, Publications, Beijing (1996).
Liu P, Ptacek CJ, Blowes DW, Landis RC, J. Hazard. Mater., 308, 233 (2016)
Hadi P, To MH, Hui CW, Li CSK, Mckay G, Water Res., 73, 37 (2015)
Hutson ND, Attwood BC, Scheckel KG, Environ. Sci. Technol., 41, 1747 (2007)
Kuma ASK, Jiang SJ, Tseng WL, J. Environ. Chem. Eng., 4, 2052 (2016)
Magni E, Somorjai GA, Appl. Surf. Sci., 89, 187 (1995)
Kumar ASK, Jiang SJ, RSC Adv., 5, 6294 (2015)
GuanY, Hu T, Zhao L, Wu J, Tian F, Pan W, He P, Qi X, Li F, Xu K, Korean J. Chem. Eng., 36(1), 115 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로