ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 14, 2019
Accepted January 31, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Measurement and correlation of thermodynamic properties of ternary mixtures of oxygenated fuel

1Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India 2Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 34134, Korea 3Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India
sjpark@cnu.ac.kr
Korean Journal of Chemical Engineering, July 2020, 37(7), 1181-1194(14), 10.1007/s11814-020-0502-9
downloadDownload PDF

Abstract

Oxygenated fuels are of great interest as these are more energy efficient and environment friendly. Therefore, thermodynamic properties like density, ultrasonic speed and refractive indices of diisopropyl ether+benzene+nhexane mixtures were measured experimentally at 298.15 K, 308.15 K and 318.15 K. Excess properties like volume (Vm E ), isentropic compressibility (KS E), intermolecular free length (Lf E) as well as deviation in ultrasonic speed (Δu) and refractive index (Δn) of these mixtures were derived from experimental data. The Vm E values were also fitted to the Singh, Cibulka and Nagata equations, and the same were also predicted using Prigogine-Flory-Patterson theory and four geometrical models from constituent binary Vm E data. The u data were correlated by Nomato, van Dael, impedance dependence correlations and CFT theory at 298.15 K. Lf E and Va E were also calculated using Jacobson free length theory at 298.15 K. The n data were also predicted by Arago-Biot, Gladstone-Dale, Weiner, Heller, Newton, Eyring and John mixing rules.

References

El-Sayed HEM, Asfour AFA, Int. J. Thermophys., 30, 1773 (2009)
Chen HW, Tu CH, J. Chem. Eng. Data, 51(1), 261 (2006)
Atik Z, Lourdani K, J. Chem. Thermodyn., 39(4), 576 (2007)
Gu JE, Oh HY, Park SJ, Korean Chem. Eng. Res., 57(1), 78 (2019)
Rani M, Maken S, Park SJ, Korean J. Chem. Eng., 36(9), 1401 (2019)
Lee KH, Gu JE, Oh HY, Park SJ, Korean J. Chem. Eng., 35(8), 1710 (2018)
Lee KH, Park SJ, Korean J. Chem. Eng., 35(1), 222 (2018)
Singh KC, Kalra KC, Maken S, Yadav BL, J. Chem. Eng. Data, 39(2), 241 (1994)
Gahlyan S, Verma S, Rani M, Maken S, J. Mol. Liq., 244, 233 (2017)
Gahlyan S, Rani M, Lee I, Moon I, Maken SK, Korean J. Chem. Eng., 32(1), 168 (2015)
Kashyap P, Rani M, Gahlyan S, Tiwari DP, Maken S, J. Mol. Liq., 268, 303 (2018)
Bhardwaj U, Maken S, Singh KC, Thermochim. Acta, 37A, 316 (1998)
Bhardwaj U, Maken S, Singh KC, J. Chem. Eng. Data, 41(5), 1043 (1996)
Gupta V, Maken S, Kalra KC, Singh KC, Thermochim. Acta, 35A, 508 (1996)
Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42 (2014)
Bhardwaj U, Maken S, Singh KC, J. Chem. Thermodyn., 28(10), 1173 (1996)
Devi R, Gahlyan S, Rani M, Maken S, J. Mol. Liq., 276, 753 (2019)
Singh KC, Kalra KC, Maken S, Gupta V, Fluid Phase Equilib., 123(1-2), 271 (1996)
Verma S, Gahlyan S, Kaur J, Maken S, J. Mol. Liq., 292, 111359 (2019)
Rani M, Maken S, Thermochim. Acta, 559, 98 (2013)
Bhardwaj U, Maken S, Singh KC, Fluid Phase Equilib., 142(1-2), 205 (1998)
Bhardwaj U, Singh KC, Maken S, J. Chem. Thermodyn., 30(2), 253 (1998)
Rani M, Agarwal S, Lahot P, Maken S, J. Ind. Eng. Chem., 19(5), 1715 (2013)
Singh KC, Kalra KC, Maken S, Gupta V, Fluid Phase Equilib., 119(1-2), 175 (1996)
Bhardwaj U, Singh KC, Maken S, J. Chem. Thermodyn., 31(7), 921 (1999)
Verma S, Gahlyan S, Rani M, Maken S, J. Mol. Liq., 265, 468 (2018)
Gahlyan S, Verma S, Rani M, Maken S, Asian J. Chem., 30, 731 (2018)
Gahlyan S, Rani M, Maken S, Kwonc H, Tak K, Moon I, J. Ind. Eng. Chem., 23, 299 (2015)
Rani M, Maken S, Korean J. Chem. Eng., 30(8), 1636 (2013)
Bhardwaj U, Maken S, Singh KC, Fluid Phase Equilib., 143(1-2), 153 (1998)
Maken S, Deshwal BR, Anu, Singh KC, Park SJ, Park JW, Phys. Chem. Liq., 43, 149 (2005)
Bhardwaj U, Singh KC, Maken S, J. Chem. Thermodyn., 30(1), 109 (1998)
Gupta V, Maken S, Kalra KC, Singh LC, Fluid Phase Equilib., 120(1-2), 195 (1996)
Gupta V, Maken S, Kalra KC, Singh KC, Thermochim. Acta, 277, 187 (1996)
Maken S, Gaur A, Verma N, Singh KC, Lee S, Park JW, J. Ind. Eng. Chem., 13(7), 1098 (2007)
Devi R, Gahlyan S, Rani M, Maken S, Asian J. Chem., 30, 2054 (2018)
Devi R, Gahlyan S, Rani M, Maken S, J. Mol. Liq., 275, 364 (2019)
Gahlyan S, Verma S, Rani M, Maken S, J. Mol. Liq., 258, 142 (2018)
Gahlyan S, Verma S, Rani M, Maken S, Korean Chem. Eng. Res., 56(4), 536 (2018)
Kashyap P, Rani M, Tiwari DP, Park SJ, Korean J. Chem. Eng., 36(11), 1922 (2019)
Gahlyan S, Rani M, Maken S, J. Mol. Liq., 219, 1107 (2016)
Gahlyan S, Verma S, Rani M, Maken S, Korean J. Chem. Eng., 35(5), 1167 (2018)
Gahlyan S, Verma S, Rani M, Maken S, Korean Chem. Eng. Res., 55(5), 668 (2017)
Verma S, Gahlyan S, Rani M, Maken S, J. Mol. Liq., 274, 300 (2019)
Verma S, Gahlyan S, Rani M, Maken S, Arabian J. Sci. Eng., 43, 6087 (2018)
Riddick JA, Bunger WB, Sakano TK, Organic solvents. physical properties and methods of purification, 4th Ed., Wiley, New York (1986).
Aralaguppi MI, Jadar CV, Aminabhavi TM, J. Chem. Eng. Data, 44, 435 (1999)
Singh PP, Nigam RK, Sharma SP, Aggarwal S, Fluid Phase Equilib., 18, 333 (1984)
Cibulka I, Collect. Czech. Chem. Commun., 47, 1414 (1982)
Nagata I, Tamura K, J. Chem. Eng. Data, 33, 283 (1988)
Tsao CC, Chem. Eng. Prog. Symp. Ser., 49, 107 (1953)
Jacob KT, Fitzner K, Thermochim. Acta, 18, 197 (1977)
Kohler F, Monatsh. Chem., 91, 738 (1960)
Rastogi RP, Nath J, Das SS, J. Chem. Eng. Data, 22, 249 (1977)
Radojkovic N, Tasic A, Grozdanic D, Djordjevic B, Malic D, J. Chem. Thermodyn., 9, 349 (1977)
Prigogine, Bellemans A, Mathot V, The molecular theory of solutions, North-Holland Publishing, Amsterdam (1957).
Prigogine I, Trappeniers N, Mathot V, Discuss. Faraday Soc., 15, 93 (1953)
Prigogine I, Trappeniers N, Mathot V, J. Chem. Phys., 21, 559 (1953)
Torres RB, Francesconi AZ, Volpe PLO, J. Mol. Liq., 110, 81 (2004)
Abe A, Flory PJ, J. Am. Chem. Soc., 87, 1838 (1965)
Flory PJ, J. Am. Chem. Soc., 87, 1833 (1965)
Patterson D, Thermochim. Acta, 267, 15 (1995)
Nomoto O, J. Phys. Soc. Jpn., 13, 1528 (1958)
Van Deal W, Thermodynamic properties and velocity of sound, Butterworth, London (1975).
Yu CH, Tsai FN, J. Chem. Eng. Data, 39(3), 441 (1994)
Schaaffs W, Acoustica, 33, 272 (1975)
Schaaffs W, Molekularakustik, Springer-Verlag, Berlin (1963).
Nutsch-Kuhnkies R, Acoustica, 15, 383 (1965)
Jacobson B, Acta Chem. Scand., 8, 1485 (1952)
Jacobson B, J. Chem. Phys., 20, 927 (1952)
Jacobson B, Acta. Chem. Scand., 9, 997 (1955)
Verma S, Gahlyan S, Rani M, Maken S, Korean Chem. Eng. Res., 56(5), 663 (2018)
Gahlyan S, Bhagat P, Devi R, Verma S, Rani M, Maken S, J. Mol. Liq., 306, 112605 (2020)
Gahlyan S, Rani M, Devi R, Park SJ, Maken S, J. Mol. Liq., 304, 112740 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로