ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 30, 2019
Accepted May 11, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Glass ceramic coating on LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries

Department of Chemical Engineering & Center for the SMART Energy Platform, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi 17104, Korea
cwlee@khu.ac.kr
Korean Journal of Chemical Engineering, August 2020, 37(8), 1331-1339(9), 10.1007/s11814-020-0570-x
downloadDownload PDF

Abstract

Alleviating the surface degradation of Ni-rich cathode materials is desirable to achieve better electrochemical performance. Herein, we report the surface coating of lithium diborate (Li2O-2B2O3) over the Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material and the systematic investigation of its electrochemical properties. The structural and morphological properties were characterized through X-ray diffraction (XRD), high resolution field-emission scanning electron microscopy (HR FE-SEM), and high resolution field-emission transmission electron microscopy (HR FE-TEM). As a cathode material for Li-ion batteries, the 1.0 wt% Li2O-2B2O3 coated NCM811 exhibits better electrochemical properties than the bare NCM811 as well as 0.5 and 2wt% coated electrodes at room and elevated temperatures (60 °C ). The improved electrochemical performance of 1.0 wt% Li2O-2B2O3 coated NCM811 might be due to the optimal coating amount that promotes better ion and electron movement along with prevention of surface degradation.

References

Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K, Nat. Mater., 8(4), 320 (2009)
O’Heir J, Mech. Eng., 139, 10 (2017)
Ji L, Lin Z, Alcoutlabi M, Zhang X, Energy Environ. Sci., 4, 2682 (2011)
Zhu JP, Xu QB, Yang HW, Zhao JJ, Yang G, J. Nanosci. Nanotechnol., 11, 10357 (2011)
Wohlfahrt-Mehrens M, Vogler C, Garche J, J. Power Sources, 127(1-2), 58 (2004)
Goodenough JB, J. Solid State Electrochem., 16, 2019 (2012)
Manthiram A, Kim J, Chem. Mater., 10, 2895 (1998)
Fan J, Fedkiw PS, J. Power Sources, 72(2), 165 (1998)
Kim J, Manthiram A, Electrochem. Solid-State Lett., 1, 207 (1998)
Chung KY, Kim KB, Electrochim. Acta, 49(20), 3327 (2004)
Chung KY, Kim KB, J. Electrochem. Soc., 149, 79 (2002)
Ilango PR, Subburaj T, Prasanna K, Jo YN, Lee CW, Mater. Chem. Phys., 158, 45 (2015)
Jo YN, Prasanna K, Park SJ, Lee CW, Electrochim. Acta, 108, 32 (2013)
Liang C, Kong F, Longo RC, Santosh KC, Kim JS, Jeon SH, Choi SA, Cho K, J. Phys. Chem. C, 120, 6383 (2016)
Zhang LS, Wang H, Wang LZ, Cao Y, Appl. Surf. Sci., 450, 461 (2018)
Min K, Seo SW, Song YY, Lee HS, Cho E, Phys. Chem. Chem. Phys., 19, 1762 (2017)
Dixit M, Markovsky B, Schipper F, Aurbach D, Major DT, J. Phys. Chem. C, 121, 22682 (2017)
Mezaal MA, Qu L, Li G, Liu W, Zhao X, Fan Z, Lei L, J. Solid State Electrochem., 21, 2219 (2017)
Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, et al., Nature Mater., 12, 827 (2013)
Grimaud A, Hong WT, Shao-Horn Y, Tarascon JM, Nat. Mater., 15(2), 121 (2016)
Abouimrane A, Belharouak I, Amine K, Electrochem. Commun., 11, 1073 (2009)
He JR, Chen YF, Li PJ, Wang ZG, Qi F, Liu JB, RSC Adv., 4, 2568 (2014)
Shim JH, Kim YM, Park M, Kim J, Lee S, ACS Appl. Mater. Interfaces, 9, 18720 (2017)
Luo WB, Zheng BL, Appl. Surf. Sci., 404, 310 (2017)
Kang SH, Jo YN, Prasanna K, Kim TH, Do SJ, Santhoshkumar P, Sivagami IN, Lee CW, J. Nanosci. Nanotech., 17, 8093 (2017)
Senthil C, Vediappan K, Nanthagopal M, Kang HS, Santhoshkumar P, Gnanamuthu R, Lee CW, Chem. Eng. J., 372, 765 (2019)
Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, et al., Adv. Eng. Mater., 8, 170168 (2018)
Xiong X, Wang Z, Yin X, Guo H, Li X, Mater. Lett., 110, 4 (2013)
Cho J,K Kim TJ, Kim J, Noh M, Park B, J. Electrochem. Soc., 151, 1899 (2004)
Soppe W, Aldenkamp F, den Hartog HW, J. Non-Cryst. Solids, 91, 351 (1987)
Islam MM, Bredow T, Heitjans P, J. Phys. Condens. Matter, 24, 203201 (2012)
Majerus O, Cormier L, Calas G, Beuneu B, J. Phys. Chem. B, 107(47), 13044 (2003)
Tan SY, Wang L, Bian L, Xu JB, Ren W, Hu PF, Chang AM, J. Power Sources, 277, 139 (2015)
Lim SN, Ahn W, Yeon SH, Bin Park S, Electrochim. Acta, 136, 1 (2014)
Majerus O, Cormier L, Calas G, Beuneu B, Phys. Rev. B - Condens. Matter Mater. Phys., 67, 1 (2003).
Nanthagopal M, Santhoshkumar P, Shaji N, Praveen S, Kang HS, Senthil C, Lee CW, Appl. Surf. Sci., 492, 871 (2019)
Ohzuku T, Ueda A, Nagayama M, J. Electrochem. Soc., 140, 1862 (1993)
Yadav AK, Singh P, RSC Adv., 5, 67583 (2015)
Chae JS, Yoon SB, Yoon WS, Kang YM, Park SM, Lee JW, Roh KC, J. Alloy. Compd., 601, 217 (2014)
Tan SY, Wang L, Bian L, Xu JB, Ren W, Hu PF, Chang AM, J. Power Sources, 277, 139 (2015)
Choi SH, Kim JH, Ko YN, Yang KM, Kang YC, J. Power Sources, 244, 129 (2013)
Wang L, Hu YH, Int. J. Energy Res., 43(9), 4644 (2019)
Anderson O, Stuart D, J. Am. Ceram. Soc., 37, 573 (1954)
Rao RP, Tho TD, Adams S, Solid State Ion., 181(1-2), 1 (2010)
Shen S, Hong Y, Zhu F, Cao Z, Li Y, Ke F, Fan J, Zhou L, et al., ACS Appl. Mater. Interfaces, 10, 12666 (2018)
Becker D, Borner M, Nolle R, Diehl M, Klein S, Rodehorst U, Schmuch R, Winter M, Placke T, ACS Appl. Mater. Interfaces, 11, 18404 (2019)
Zhu W, Huang X, Liu T, Xie Z, Wang Y, Tian K, Bu L, Wang H, Gao L, Zhao J, Coatings, 9, 92 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로