Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 14, 2020
Accepted June 4, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Photocatalytic water splitting using hygroscopic MgO modified TiO2/WO3 dual-layer photocatalysts
1Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan 2Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan 3Institute of Nuclear Energy Research, Atomic Energy Council, Lungtan 32546, Taiwan
cswu@ntu.edu.tw
Korean Journal of Chemical Engineering, August 2020, 37(8), 1352-1359(8), 10.1007/s11814-020-0603-5
Download PDF
Abstract
MgO modified TiO2/WO3 dual-layer photocatalysts (DLP) was synthesized by radio-frequency magnetron sputtering (RFMS). The influences of MgO on the properties and the performance of the prepared DLP were investigated. MgO modified TiO2 thin films were characterized by instrumental analysis such as XRD, AFM, SEM-EDS, and UV-visible absorption spectrometry. Their photoactivity was assessed by conducting photovoltammetry followed by splitting water in a twin-cell reactor, where hydrogen gas and oxygen gas were produced separately. The yield of H2 and O2 in the twin-cell reactor corresponded to the photovoltammetry results, indicating that MgO can significantly improve the photoactivity of DLP. The improvement is attributed primarily to the hygroscopic Nature of MgO, which can increase the amount of H2O molecules on the surface of TiO2 for carrying out the photoreaction. In addition, the incorporated MgO layer can also act as an insulator to suppress the electron leakage that occurred at the TiO2-water interface.
References
Momirlan M, Veziroglu TN, Renew. Sust. Energ. Rev., 6, 141 (2002)
Ni M, Leung MKH, Leung DYC, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
Fujishima A, Honda K, Nature, 238, 37 (1972)
Huang CW, Nguyen VH, Zhou SR, Hsu SY, Tan JX, Wu KCW, Sustain. Energy Fuels, 4, 504 (2020)
Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211 (2011)
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H, J. Phys. Chem., 90, 292 (1986)
Gurunathan K, Maruthamuthu P, Sastri MVC, Int. J. Hydrog. Energy, 22, 57 (1997)
Kudo A, Kato H, Nakagawa S, J. Phys. Chem. B, 104, 571 (1999)
Kikuchi H, Kitano M, Takeuchi M, Matsuoka M, Anpo M, Kamat PV, J. Phys. Chem. B, 110(11), 5537 (2006)
Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M, Chem. Lett., 34(4), 616 (2005)
Liao CH, Huang CW, Wu JCS, Int. J. Hydrog. Energy, 37(16), 11632 (2012)
Liao CH, Huang CW, Wu JCS, Asia-Pac. J. Chem. Eng., 8, 283 (2013)
Kitano M, Takeuchi M, Matsuoka M, Thomas JA, Anpo M, Catal. Today, 120(2), 133 (2007)
Tada H, Kubo Y, Akazawa M, Ito S, Langmuir, 14(11), 2936 (1998)
Tada H, Yamamoto M, Ito S, Langmuir, 15(11), 3699 (1999)
Anderson C, Bard AJ, J. Phys. Chem., 99(24), 9882 (1995)
Jung HS, Lee JK, Nastasi M, Kim JR, Lee SW, Kim JY, Park JS, Hong KS, Shin H, Appl. Phys. Lett., 88, 013107 (2006)
Bae ST, Shin H, Kim JY, Jung HS, Hong KS, J. Phys. Chem. C, 112, 9937 (2008)
Huang CW, Liao CH, Wu JCS, Liu YC, Chang CL, Wu CH, Anpo M, Matsuoka M, Takeuchi M, Int. J. Hydrog. Energy, 35(21), 12005 (2010)
Liao CH, Huang CW, Wu JCS, Int. J. Hydrog. Energy, 37(16), 11632 (2012)
Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin H, Langmuir, 21(23), 10332 (2005)
Kitano M, Kikuchi H, Hosoda T, Takeuchi M, Matsuoka M, Eura T, Anpo M, Thomas JM, Key Eng. Mater., 317, 823 (2006)
Jung HS, Lee JK, Hong KS, Youn HJ, J. Appl. Phys., 92, 2855 (2002)
Ni M, Leung MKH, Leung DYC, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
Fujishima A, Honda K, Nature, 238, 37 (1972)
Huang CW, Nguyen VH, Zhou SR, Hsu SY, Tan JX, Wu KCW, Sustain. Energy Fuels, 4, 504 (2020)
Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211 (2011)
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H, J. Phys. Chem., 90, 292 (1986)
Gurunathan K, Maruthamuthu P, Sastri MVC, Int. J. Hydrog. Energy, 22, 57 (1997)
Kudo A, Kato H, Nakagawa S, J. Phys. Chem. B, 104, 571 (1999)
Kikuchi H, Kitano M, Takeuchi M, Matsuoka M, Anpo M, Kamat PV, J. Phys. Chem. B, 110(11), 5537 (2006)
Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M, Chem. Lett., 34(4), 616 (2005)
Liao CH, Huang CW, Wu JCS, Int. J. Hydrog. Energy, 37(16), 11632 (2012)
Liao CH, Huang CW, Wu JCS, Asia-Pac. J. Chem. Eng., 8, 283 (2013)
Kitano M, Takeuchi M, Matsuoka M, Thomas JA, Anpo M, Catal. Today, 120(2), 133 (2007)
Tada H, Kubo Y, Akazawa M, Ito S, Langmuir, 14(11), 2936 (1998)
Tada H, Yamamoto M, Ito S, Langmuir, 15(11), 3699 (1999)
Anderson C, Bard AJ, J. Phys. Chem., 99(24), 9882 (1995)
Jung HS, Lee JK, Nastasi M, Kim JR, Lee SW, Kim JY, Park JS, Hong KS, Shin H, Appl. Phys. Lett., 88, 013107 (2006)
Bae ST, Shin H, Kim JY, Jung HS, Hong KS, J. Phys. Chem. C, 112, 9937 (2008)
Huang CW, Liao CH, Wu JCS, Liu YC, Chang CL, Wu CH, Anpo M, Matsuoka M, Takeuchi M, Int. J. Hydrog. Energy, 35(21), 12005 (2010)
Liao CH, Huang CW, Wu JCS, Int. J. Hydrog. Energy, 37(16), 11632 (2012)
Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin H, Langmuir, 21(23), 10332 (2005)
Kitano M, Kikuchi H, Hosoda T, Takeuchi M, Matsuoka M, Eura T, Anpo M, Thomas JM, Key Eng. Mater., 317, 823 (2006)
Jung HS, Lee JK, Hong KS, Youn HJ, J. Appl. Phys., 92, 2855 (2002)