Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 19, 2020
Accepted May 15, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Confinement of Ru nanoparticles inside the carbon nanotube: Selectivity controls on methanol decomposition
Center for Environment and Sustainable Resources, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea 1Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
Korean Journal of Chemical Engineering, August 2020, 37(8), 1365-1370(6), 10.1007/s11814-020-0582-6
Download PDF
Abstract
Carbon nanotubes (CNT) have been widely used as catalyst supports, and the confinement of metal nanoparticles inside the CNT cavity have received much attention. In this study, graphitic carbon nitride were used to introduce nitrogen to CNT and form ruthenium nanoparticles inside the CNT channel. The XPS evidenced that the ruthenium nanoparticles in the CNT cavity are present in more reduced state, and the nitrogen species are in a pyridinic and a pyrrolic form. The prepared catalysts exhibited excellent hydrogen and carbon monoxide selectivity. The hydrogen-to-carbon monoxide ratio was close to the stoichiometric ratio of methanol decomposition. In contrast, the ruthenium nanoparticles outside the CNT showed lower carbon monoxide selectivity at high methanol conversion. The alteration of electrical properties of ruthenium nanoparticles by the CNT channel and N-doping might hamper side reactions, such as water gas shift, methanation, dimethyl ether formation upon methanol decomposition.
References
Zhang D, Wei G, Wang Y, Wang J, Ning P, Zhang Q, Wang M, Zhang T, Long K, Korean J. Chem. Eng., 35(10), 1979 (2018)
Pan XL, Fan ZL, Chen W, Ding YJ, Luo HY, Bao XH, Nat. Mater., 6(7), 507 (2007)
Castillejos E, Debouttiere PJ, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P, Angew. Chem.-Int. Edit., 48(14), 2529 (2009)
Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P, Nano Lett., 3(1), 21 (2003)
Liu H, Zhang L, Wang N, Su DS, Angew. Chem.-Int. Edit., 53(46), 12634 (2014)
Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C, Appl. Catal. A: Gen., 288(1-2), 203 (2005)
Wang D, Liu J, Xi JB, Jiang JZ, Bai ZW, Appl. Surf. Sci., 489, 477 (2019)
Palacio I, de la Fuente OR, Surf. Sci., 606(15-16), 1152 (2012)
Sieben JM, Duarte MME, Int. J. Hydrog. Energy, 37(13), 9941 (2012)
Shiozaki R, Hayakawa T, Liu YY, Ishii T, Kumagai M, Hamakawa S, Suzuki K, Itoh T, Shishido T, Takehira K, Catal. Lett., 58(2-3), 131 (1999)
Hokenek S, Kuhn JN, ACS Catal., 2(6), 1013 (2012)
Paneva D, Tsoncheva T, Manova E, Mitov I, Ruskov T, Appl. Catal. A: Gen., 267(1-2), 67 (2004)
Tsoncheva T, Genova I, Stoyanova M, Pohl MM, Nickolov R, Dimitrov M, Sarcadi-Priboczki E, Mihaylov M, Kovacheva D, Hadjiivanov K, Appl. Catal. B: Environ., 147, 684 (2014)
Fan MQ, Xu Y, Sakurai J, Demura M, Hirano T, Teraoka Y, Yoshigoe A, Catal. Lett., 144(5), 843 (2014)
Hong S, Rahman TS, J. Am. Chem. Soc., 135(20), 7629 (2013)
Wang H, Lu JL, Marshall CL, Elam JW, Miller JT, Liu HB, Enterkin JA, Kennedy RM, Stair PC, Poeppelmeier KR, Marks LD, Catal. Today, 237, 71 (2014)
Marban G, Lopez A, Lopez I, Valdes-Solis T, Appl. Catal. B: Environ., 99(1-2), 257 (2010)
Lee JH, Park MJ, Yoo SJ, Jang JH, Kim HJ, Nam SW, Yoon CW, Kim JY, Nanoscale, 7(23), 10334 (2015)
Hien TN, Kim YH, Jeon M, Lee HJ, Ridwan M, Tamarany R, Yoon WC, Materials, 8(6), 3442 (2015)
Lee JH, Ryu J, Kim JY, Nam SW, Han JH, Lim TH, Gautam S, Chae KH, Yoon CW, J. Mater. Chem. A, 2(25), 9490 (2014)
Kim YK, Park H, Energy Environ. Sci., 4(3), 685 (2011)
Park Y, Lee B, Kim C, Oh Y, Nam S, Park B, J. Mater. Res., 24(9), 2762 (2009)
Qiao Y, Guo S, Zhu K, Liu P, Li X, Jiang K, Sun CJ, Chen M, Zhou H, Energy Environ. Sci., 11(2), 299 (2018)
Lee WJ, Jeong SM, Lee H, Kim BJJ, An KH, Park YK, Jung SC, Korean J. Chem. Eng., 34(11), 2993 (2017)
Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, Zaharinie T, Badarudin A, J. Colloid Interface Sci., 504, 115 (2017)
Chen MH, Ke CY, Chiang CL, J. Compos. Sci., 2(2), 18 (2018)
Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH, ACS Nano, 5(6), 4350 (2011)
Lee JH, Park MJ, Jung J, Ryu J, Cho E, Nam SW, Kim JY, Yoon CW, Inorg. Chim. Acta., 422, 3 (2014)
Deng J, Ren P, Deng D, Yu L, Yang F, Bao X, Energy Environ. Sci., 7(6), 1919 (2014)
Sexton BA, Surf. Sci., 102(1), 271 (1981)
Moura AS, Fajin JLC, Pinto ASS, Mandado M, Cordeiro MNDS, J. Phys. Chem. C, 119(49), 27382 (2015)
Wei GF, Shang C, Liu ZP, Phys. Chem. Chem. Phys., 117(3), 2078 (2015)
Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P, Nano Lett., 3(1), 21 (2003)
Pan XL, Fan ZL, Chen W, Ding YJ, Luo HY, Bao XH, Nat. Mater., 6(7), 507 (2007)
Castillejos E, Debouttiere PJ, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P, Angew. Chem.-Int. Edit., 48(14), 2529 (2009)
Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P, Nano Lett., 3(1), 21 (2003)
Liu H, Zhang L, Wang N, Su DS, Angew. Chem.-Int. Edit., 53(46), 12634 (2014)
Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C, Appl. Catal. A: Gen., 288(1-2), 203 (2005)
Wang D, Liu J, Xi JB, Jiang JZ, Bai ZW, Appl. Surf. Sci., 489, 477 (2019)
Palacio I, de la Fuente OR, Surf. Sci., 606(15-16), 1152 (2012)
Sieben JM, Duarte MME, Int. J. Hydrog. Energy, 37(13), 9941 (2012)
Shiozaki R, Hayakawa T, Liu YY, Ishii T, Kumagai M, Hamakawa S, Suzuki K, Itoh T, Shishido T, Takehira K, Catal. Lett., 58(2-3), 131 (1999)
Hokenek S, Kuhn JN, ACS Catal., 2(6), 1013 (2012)
Paneva D, Tsoncheva T, Manova E, Mitov I, Ruskov T, Appl. Catal. A: Gen., 267(1-2), 67 (2004)
Tsoncheva T, Genova I, Stoyanova M, Pohl MM, Nickolov R, Dimitrov M, Sarcadi-Priboczki E, Mihaylov M, Kovacheva D, Hadjiivanov K, Appl. Catal. B: Environ., 147, 684 (2014)
Fan MQ, Xu Y, Sakurai J, Demura M, Hirano T, Teraoka Y, Yoshigoe A, Catal. Lett., 144(5), 843 (2014)
Hong S, Rahman TS, J. Am. Chem. Soc., 135(20), 7629 (2013)
Wang H, Lu JL, Marshall CL, Elam JW, Miller JT, Liu HB, Enterkin JA, Kennedy RM, Stair PC, Poeppelmeier KR, Marks LD, Catal. Today, 237, 71 (2014)
Marban G, Lopez A, Lopez I, Valdes-Solis T, Appl. Catal. B: Environ., 99(1-2), 257 (2010)
Lee JH, Park MJ, Yoo SJ, Jang JH, Kim HJ, Nam SW, Yoon CW, Kim JY, Nanoscale, 7(23), 10334 (2015)
Hien TN, Kim YH, Jeon M, Lee HJ, Ridwan M, Tamarany R, Yoon WC, Materials, 8(6), 3442 (2015)
Lee JH, Ryu J, Kim JY, Nam SW, Han JH, Lim TH, Gautam S, Chae KH, Yoon CW, J. Mater. Chem. A, 2(25), 9490 (2014)
Kim YK, Park H, Energy Environ. Sci., 4(3), 685 (2011)
Park Y, Lee B, Kim C, Oh Y, Nam S, Park B, J. Mater. Res., 24(9), 2762 (2009)
Qiao Y, Guo S, Zhu K, Liu P, Li X, Jiang K, Sun CJ, Chen M, Zhou H, Energy Environ. Sci., 11(2), 299 (2018)
Lee WJ, Jeong SM, Lee H, Kim BJJ, An KH, Park YK, Jung SC, Korean J. Chem. Eng., 34(11), 2993 (2017)
Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, Zaharinie T, Badarudin A, J. Colloid Interface Sci., 504, 115 (2017)
Chen MH, Ke CY, Chiang CL, J. Compos. Sci., 2(2), 18 (2018)
Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH, ACS Nano, 5(6), 4350 (2011)
Lee JH, Park MJ, Jung J, Ryu J, Cho E, Nam SW, Kim JY, Yoon CW, Inorg. Chim. Acta., 422, 3 (2014)
Deng J, Ren P, Deng D, Yu L, Yang F, Bao X, Energy Environ. Sci., 7(6), 1919 (2014)
Sexton BA, Surf. Sci., 102(1), 271 (1981)
Moura AS, Fajin JLC, Pinto ASS, Mandado M, Cordeiro MNDS, J. Phys. Chem. C, 119(49), 27382 (2015)
Wei GF, Shang C, Liu ZP, Phys. Chem. Chem. Phys., 117(3), 2078 (2015)
Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P, Nano Lett., 3(1), 21 (2003)