ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 29, 2020
Accepted May 27, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

In situ exsolution of Rh nanoparticles on a perovskite oxide surface: Efficient Rh catalysts for Dry reforming

1PERT, DICCA, University of Genova, Via Opera Pia 15, Genova 16145, Italy 2Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Korea 3Green School, Korea University, Seongbuk-gu, Seoul 02841, Korea 4Department of Chemical and Biological Engineering,, Korea University, Seongbuk-gu, Seoul 02841, Korea 5ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Lungotevere Thaon di Revel 76, Rome 00196, Italy
sohn@kist.re.kr
Korean Journal of Chemical Engineering, August 2020, 37(8), 1401-1410(10), 10.1007/s11814-020-0592-4
downloadDownload PDF

Abstract

The catalytic activity of the Rh-exsolved Sr0.92Y0.08Ti2O3-δ perovskite catalyst (SYTRh5) was examined for dry reforming of methane. The exsolution of the Rh nanoparticles over the SYT perovskite oxide surface was carried out under various reducing environments where the extent of Rh exsolution was significantly determined by the reduction time (4, 12, 24 h) and temperature (800, 900, 1,000 °C). STYRh5 catalysts treated at a longer reduction time and a higher reduction temperature revealed formation of larger metallic Rh nanoparticles on the perovskite oxide with higher surface concentration. For dry reforming activity, the SYTRh5 catalysts reduced at 900 and 1,000 °C for 24 h showed significantly higher methane conversion compared to others. The high catalytic performance of the SYTRh5 (900 and 1,000 °C, 24 h) catalysts was attributed to the high coke-resistance of the larger Rh-exsolved nanoparticles and stronger anchoring sites resulted from the exsolution process. Post-analysis TEM images exhibited limited carbon deposition and particle agglomeration of Rh over the SYTRh5 (900 and 1,000 °C, 24 h) catalysts. Lastly, in-situ H2S poisoning was conducted to examine the regeneration ability of SYTRh5. Although catalyst deactivation was observed, the catalytic activity of SYTRh5 (900 and 1,000 °C, 24 h) was completely recovered to the original level once the H2S flow was interrupted, indicating facile desorption of sulfur species from the Rh-exsolved nanoparticles.

References

Minutillo M, Perna A, JanneIli E, Int. J. Hydrog. Energy, 39(36), 21688 (2014)
Permatasari A, Fasahati P, Ryu JH, Liu JJ, Korean J. Chem. Eng., 33(12), 3381 (2016)
Huan Y, Li YN, Yin BY, Ding D, Wei T, J. Power Sources, 359, 384 (2017)
Frattini D, Accardo G, Moreno A, Yoon SP, Han JH, Nam SW, J. Ind. Eng. Chem., 56, 285 (2017)
Shajahan I, Ahn J, Nair P, Medisetti S, Patil S, Niveditha V, Babu GUB, Dasari HP, Lee JH, Mater. Chem. Phys., 216, 136 (2018)
Spiridigliozzi L, Dell’Agli G, Marocco A, Accardo G, Pansini M, Yoon SP, Ham HC, Frattini D, J. Ind. Eng. Chem., 59, 17 (2018)
Pikalova E, Kolchugin A, Filonova E, Bogdanovich N, Pikalov S, Ananyev M, Molchanova N, Farlenkov A, Solid State Ion., 319, 130 (2018)
Li C, Shi YX, Cai NS, J. Power Sources, 195(8), 2266 (2010)
Arato E, Audasso E, Barelli L, Bosio B, Discepoli G, J. Power Sources, 330, 18 (2016)
Kim TY, Kim BS, Park TC, Yeo YK, Korean J. Chem. Eng., 35(1), 118 (2018)
Sarmah P, Gogoi TK, Energy Conv. Manag., 132, 91 (2017)
Patcharavorachot Y, Saebea D, Authayanun S, Arpornwichanop A, Int. J. Hydrog. Energy, 43(37), 17821 (2018)
Hou QL, Zhao HB, Yang XY, Energy, 150, 434 (2018)
Barelli L, Bidini G, Ottaviano A, Energy, 118, 716 (2017)
Tagawa T, Yanase A, Goto S, Yamaguchi M, Kondo M, J. Power Sources, 126(1-2), 1 (2004)
Jang WJ, Jung YS, Shim JO, Roh HS, Yoon WL, J. Power Sources, 378, 597 (2018)
Shtyka O, Zakrzewski M, Ciesielski R, Kedziora A, Dubkov S, Ryazanov R, Szynkowska M, Maniecki T, Korean J. Chem. Eng., 37(2), 209 (2020)
Lee KJ, Koomson S, Lee CG, Korean J. Chem. Eng., 36(4), 600 (2019)
Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5, 916 (2013)
Wei T, Jia LC, Zheng HY, Chi B, Pu J, Li J, Appl. Catal. A: Gen., 564, 199 (2018)
Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, Gamble SR, Gorte RJ, Vohs JM, Irvine JTS, Nat. Commun., 6, 8120 (2015)
Palcheva R, Olsbye U, Palcut M, Rauwel P, Tyuliev G, Velinov N, Fjellvag HH, Appl. Surf. Sci., 357, 45 (2015)
Park S, Kim Y, Han H, Chung YS, Yoon W, Choi J, Kim WB, Appl. Catal. B: Environ., 248, 147 (2019)
Papargyriou D, Miller DN, Irvine JTS, J. Mater. Chem. A, 7, 15812 (2019)
Zubenko D, Singh S, Rosen BA, Appl. Catal. B: Environ., 209, 711 (2017)
Chai Y, Fu Y, Feng H, Yuan C, Kong W, Pan B, Zhang J, Sun Y, ChemCatChem, 10, 2078 (2018)
Oh JH, Kwon BW, Cho J, Lee CH, Kim MK, Choi SH, Yoon SP, Han J, Nam SW, Kim JY, Jang SS, Lee KB, Ham HC, Ind. Eng. Chem. Res., 58(16), 6385 (2019)
Papaioannou EI, Neagu D, Ramli WKW, Irvine JTS, Metcalfe IS, Top. Catal., 62, 1149 (2019)
Kim GS, Lee BY, Accardo G, Ham HC, Moon J, Yoon SP, J. Power Sources, 423, 305 (2019)
Kwon BW, Oh JH, Kim GS, Yoon SP, Han J, Nam SW, Ham HC, Appl. Energy, 227, 213 (2018)
Kim GS, Lee BY, Ham HC, Han J, Nam SW, Moon J, Yoon SP, Int. J. Hydrog. Energy, 44(1), 202 (2019)
Munoz A, Munuera G, Malet P, Gonzalez-Elipe AR, Espinos JP, Surf. Interface Anal., 12, 247 (1988)
Borg HJ, Van Den Oetelaar LCA, Niemantsverdriet JW, Catal. Lett., 17, 81 (1993)
Faroldi B, Munera J, Falivene JM, Ramos IR, Garcia AG, Fernandez LT, Carrazan SG, Cornaglia L, Int. J. Hydrog. Energy, 42(25), 16127 (2017)
Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE, J. Catal., 158(1), 51 (1996)
Ligthart DAJM, van Santen RA, Hensen EJM, J. Catal., 280(2), 206 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로