Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 20, 2020
Accepted June 30, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Surface decorated La0.43Ca0.37Ni0.06Ti0.94O3-d as an anode functional layer for solid oxide fuel cell applications
Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea 1Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea 2Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
leekt@kaist.ac.kr
Korean Journal of Chemical Engineering, August 2020, 37(8), 1440-1444(5), 10.1007/s11814-020-0623-1
Download PDF
Abstract
Surface decorated La0.43Ca0.37Ni0.06Ti0.94O3-d (LCNT) perovskite oxide was investigated as an anode functional layer (AFL) for anode-supported solid oxide fuel cells (SOFCs). The surface exsolved Ni nano particles on LCNT scaffold enlarged electrochemically active triple phase boundaries (TPBs) without any agglomeration and mechanical failure. The Ni particles with 60 nm in diameter were homogeneously exsolved from LCNT perovskite. The Ni-YSZ anode supported cell with LCNT anode functional layer (AFL) exhibited a maximum power density of 0.94 W/cm2, similar to that of the conventional Ni-YSZ AFL cell at 900 °C. The activation polarization resistance of the LCNT AFL cell was effectively reduced compared to that of the Ni-YSZ AFL cell, though it had higher Ohmic resistance due to thicker YSZ electrolyte and lower electrical conductivity. Our study suggests the potential use of LCNT with exsolved nano particles as an active and durable AFL for high-temperature SOFCs.
References
Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S, Adv. Eng. Mater., 1(3), 314 (2011)
Hauch A, Brodersen K, Chen M, Mogensen MB, Solid State Ion., 293, 27 (2016)
Guillodo M, Vernoux P, Fouletier J, Solid State Ion., 127(1-2), 99 (2000)
Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB, Nat. Energy, 1(1), 1 (2016)
Hassan AAE, Menzler NH, Blass G, Ali ME, Buchkremer HP, Stover D, Adv. Eng. Mater., 4(3), 125 (2002)
Yamaguchi T, Sumi H, Hamamoto K, Suzuki T, Fujishiro Y, Carter JD, Barnett SA, Int. J. Hydrog. Energy, 39(34), 19731 (2014)
Ai N, Lu Z, Tang JK, Chen KF, Huang XQ, Su WH, J. Power Sources, 185(1), 153 (2008)
Park YM, Lee HJ, Bae HY, Ahn JS, Kim H, Int. J. Hydrog. Energy, 37(5), 4394 (2012)
Kong JR, Sun KN, Zhou DR, Zhang NQ, Mu J, Qiao JS, J. Power Sources, 166(2), 337 (2007)
Wachsman ED, Lee KT, Science, 334(6058), 935 (2011)
Virkar AV, Chen J, Tanner CW, Kim JW, Solid State Ion., 131(1-2), 189 (2000)
Molin S, Chrzan A, Karczewski J, Szymczewska D, Jasinski P, Electrochim. Acta, 204, 136 (2016)
Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, et al., Nat. Commun., 6, 1 (2015)
Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5(11), 916 (2013)
Tan J, Lee D, Ahn J, Kim B, Kim J, Moon J, J. Mater. Chem. A, 6(37), 18133 (2018)
Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, Adv. Mater., 1906193, 1 (2019)
Myung JH, Neagu D, Miller DN, Irvine JTS, Nature, 537(7621), 528 (2016)
Lu L, Ni C, Cassidy M, Irvine JTS, J. Mater. Chem. A, 4(30), 11708 (2016)
Kim J, Shin D, Son JW, Lee JH, Kim BK, Je HJ, Lee HW, Yoon KJ, J. Power Sources, 241, 440 (2013)
Rosen BA, Electrochem, 1(1), 32 (2020)
Tao S, Irvine JTS, Chem. Rec., 4, 83 (2004)
Clemmer RMC, Corbin SF, Solid State Ion., 166(3-4), 251 (2004)
Divisek J, Wilkenhoner R, Volfkovich Y, J. Appl. Electrochem., 29(2), 153 (1999)
Holtappels P, Sorof C, Verbraeken MC, Rambert S, Vogt U, Fuel Cells, 6(2), 113 (2006)
Kagomiya I, Kaneko S, Yagi Y, Kakimoto K, Park K, Cho KH, Ionics, 23(2), 427 (2017)
Barfod R, Mogensen M, Klemensø T, Hagen A, Liu YL, Hendriksen PV, Proc. - Electrochem. Soc., 154(4), B371 (2007)
Jia T, Zeng Z, Zhang X, Zhang X, Ohodnicki P, Chorpening B, Hackett G, Lekse J, Duan Y, Phys. Chem. Chem. Phys., 21(36), 20454 (2019)
Bradha M, Hussain S, Chakravarty S, Amarendra G, Ashok A, J. Alloy. Compd., 626, 245 (2015)
Bradha M, Hussain S, Chakravarty S, Amarendra G, Ashok A, Ionics, 20(9), 1343 (2014)
Hauch A, Brodersen K, Chen M, Mogensen MB, Solid State Ion., 293, 27 (2016)
Guillodo M, Vernoux P, Fouletier J, Solid State Ion., 127(1-2), 99 (2000)
Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB, Nat. Energy, 1(1), 1 (2016)
Hassan AAE, Menzler NH, Blass G, Ali ME, Buchkremer HP, Stover D, Adv. Eng. Mater., 4(3), 125 (2002)
Yamaguchi T, Sumi H, Hamamoto K, Suzuki T, Fujishiro Y, Carter JD, Barnett SA, Int. J. Hydrog. Energy, 39(34), 19731 (2014)
Ai N, Lu Z, Tang JK, Chen KF, Huang XQ, Su WH, J. Power Sources, 185(1), 153 (2008)
Park YM, Lee HJ, Bae HY, Ahn JS, Kim H, Int. J. Hydrog. Energy, 37(5), 4394 (2012)
Kong JR, Sun KN, Zhou DR, Zhang NQ, Mu J, Qiao JS, J. Power Sources, 166(2), 337 (2007)
Wachsman ED, Lee KT, Science, 334(6058), 935 (2011)
Virkar AV, Chen J, Tanner CW, Kim JW, Solid State Ion., 131(1-2), 189 (2000)
Molin S, Chrzan A, Karczewski J, Szymczewska D, Jasinski P, Electrochim. Acta, 204, 136 (2016)
Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, et al., Nat. Commun., 6, 1 (2015)
Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5(11), 916 (2013)
Tan J, Lee D, Ahn J, Kim B, Kim J, Moon J, J. Mater. Chem. A, 6(37), 18133 (2018)
Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, Adv. Mater., 1906193, 1 (2019)
Myung JH, Neagu D, Miller DN, Irvine JTS, Nature, 537(7621), 528 (2016)
Lu L, Ni C, Cassidy M, Irvine JTS, J. Mater. Chem. A, 4(30), 11708 (2016)
Kim J, Shin D, Son JW, Lee JH, Kim BK, Je HJ, Lee HW, Yoon KJ, J. Power Sources, 241, 440 (2013)
Rosen BA, Electrochem, 1(1), 32 (2020)
Tao S, Irvine JTS, Chem. Rec., 4, 83 (2004)
Clemmer RMC, Corbin SF, Solid State Ion., 166(3-4), 251 (2004)
Divisek J, Wilkenhoner R, Volfkovich Y, J. Appl. Electrochem., 29(2), 153 (1999)
Holtappels P, Sorof C, Verbraeken MC, Rambert S, Vogt U, Fuel Cells, 6(2), 113 (2006)
Kagomiya I, Kaneko S, Yagi Y, Kakimoto K, Park K, Cho KH, Ionics, 23(2), 427 (2017)
Barfod R, Mogensen M, Klemensø T, Hagen A, Liu YL, Hendriksen PV, Proc. - Electrochem. Soc., 154(4), B371 (2007)
Jia T, Zeng Z, Zhang X, Zhang X, Ohodnicki P, Chorpening B, Hackett G, Lekse J, Duan Y, Phys. Chem. Chem. Phys., 21(36), 20454 (2019)
Bradha M, Hussain S, Chakravarty S, Amarendra G, Ashok A, J. Alloy. Compd., 626, 245 (2015)
Bradha M, Hussain S, Chakravarty S, Amarendra G, Ashok A, Ionics, 20(9), 1343 (2014)