ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 20, 2019
Accepted February 17, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improving primary sludge dewaterability by oxidative conditioning process with ferrous ion-activated peroxymonosulfate

1Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China 2State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 150001, Harbin, China 3Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan 4Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
cchen@hit.edu.cn
Korean Journal of Chemical Engineering, September 2020, 37(9), 1498-1506(9), 10.1007/s11814-020-0517-2
downloadDownload PDF

Abstract

Enhancement of sludge dewaterability is key for sludge management and disposal of wastewater treatment plants (WWTP). In this study, the Fe2+-peroxymonosulfate (PMS) conditioning approach was first used to oxidize the primary sludge from the primary sedimentation tank of a full scale WWTP. The combination of Fe2+ (0.05-0.5 g/g TSS) and PMS (0.05-0.5 g/g TSS) could significantly improve the dewaterability of primary sludge. The optimal addition amount of Fe2+ and PMS was 0.1 g/g TSS and 0.25 g/g TSS, respectively, under which the capillary suction time (CST) and specific resistance to filtration (SRF) of the sludge was reduced by 79% and 95%. The physicochemical properties (particle size, zeta potential, EPS composition) of the primary sludge before and after oxidative conditioning were measured. Results showed that sulfate radicals generated from Fe2+-PMS system effectively reduced organic matter in different EPS fractions, further destroying sludge floc cells. Then the bound water in the sludge flocs was released, thereby improving the sludge dewaterability. The microscopic morphology also indicated that the sludge flocs have a blocky structure with tight texture before conditioning. After conditioning, the sludge flocs become smaller, and many irregular pores are formed on the surface, which facilitates the passage of internal moisture. Economic analysis showed that Fe2++PMS conditioning is more economical than the traditional Fenton method.

References

Wang Q, Wei W, Gong Y, Yu Q, Li Q, Sun J, Yuan Z, Sci. Total Environ., 587-588, 510 (2017)
Wei W, Zhou X, Wang D, Sun J, Wang Q, Water Res., 118, 12 (2017)
Zhou X, Jiang G, Wang Q, Yuan Z, Rsc Adv., 4, 50644 (2014)
Xiao K, Chen Y, Jiang X, Yang Q, Seow WY, Zhu W, Zhou Y, Water Res., 109, 13 (2017)
Cao B, Zhang W, Du Y, Wang R, Usher SP, Scales PJ, Wang D, Water Res., 130, 363 (2018)
Gao W, Desalination, 268(1-3), 170 (2011)
Guo S, Qu F, Ding A, He J, Yu H, Bai L, Li G, Liang H, Rsc Adv., 5, 43065 (2015)
Wang L, Qian C, Jiang J, Ye X, Yu H, Environ. Pollut., 231, 1388 (2017)
Su GQ, Huo MX, Yuan ZG, Wang SY, Peng YZ, Bioresour. Technol., 136, 237 (2013)
Kurade MB, Murugesan K, Selvam A, Yu SM, Wong JWC, Bioresour. Technol., 217, 179 (2016)
Zhang WJ, Xiao P, Liu YY, Xu SW, Xiao F, Wang DS, Chow CWK, Sep. Purif. Technol., 132, 430 (2014)
Liu H, Yang JK, Zhu NR, Zhang H, Li Y, He S, Yang CZ, Yao H, J. Hazard. Mater., 258, 144 (2013)
Zhou X, Wang QL, Jiang GM, Liu P, Yuan ZG, Bioresour. Technol., 185, 416 (2015)
Zhou X, Chen H, Gao SH, Han S, Tu R, Wei W, Cai C, Liu P, Jin W, Wang Q, Korean J. Chem. Eng., 34(10), 2672 (2017)
Zhen GY, Lu XQ, Li YY, Zhao YC, Wang BY, Song Y, Chai XL, Niu DJ, Cao XY, Bioresour. Technol., 119, 7 (2012)
Dewil R, Baeyens J, Neyens E, J. Hazard. Mater., 117(2-3), 161 (2005)
Neyens E, Baeyens J, Weemaes M, De heyder B, J. Hazard. Mater., 98(1-3), 91 (2003)
Kim MS, Lee K, Kim H, Lee H, Lee C, Lee C, Environ. Sci. Technol., 50, 7106 (2016)
Ren W, Zhou Z, Zhu Y, Jiang L, Wei H, Niu T, Fu P, Qiu Z, Int. Biodeter. Biodegr., 104, 384 (2015)
Liu CG, Wu B, Chen X, Chem. Eng. J., 335, 865 (2018)
Waclawek S, Lutze HV, Grubel K, Padil VVT, Cernik M, Dionysiou DD, Chem. Eng. J., 330, 44 (2017)
Liu CG, Chem. Eng. J., 359, 217 (2019)
Rastogi A, Al-Abed SR, Dionysiou DD, Water Res., 43, 684 (2009)
Cai C, Zhang H, Zhong X, Hou LW, J. Hazard. Mater., 283, 70 (2015)
Liu J, Yang Q, Wang DB, Li XM, Zhong Y, Li X, Deng YC, Wang LQ, Yi KX, Zeng GM, Bioresour. Technol., 206, 134 (2016)
Song K, Zhou X, Liu Y, Gong Y, Zhou B, Wang D, Wang Q, Sci. Rep-Uk., 6, 24800 (2016)
Canziani R, Spinosa L, Sludge from wastewater treatment plants, Elsevier, The Netherlands (2019).
Tyagi VK, Lo S, Renew. Sust. Energ. Rev., 25, 708 (2013)
Carrere H, Dumas C, Battimelli A, Batstone DJ, Delgenes JP, Steyer JP, Ferrer I, J. Hazard. Mater., 183(1-3), 1 (2010)
Devi P, Saroha AK, Sci. Total Environ., 578, 16 (2017)
Meyer T, Amin P, Allen DG, Tran H, J. Environ. Chem. Eng., 6, 6317 (2018)
Benitez J, Rodriguez A, Suarez A, Water Res., 28, 2067 (1994)
Diak J, Ormeci B, J. Environ. Manage., 216, 406 (2018)
Lu JA, Rao S, Le TA, Mora S, Banerjee S, Process Biochem., 46(1), 353 (2011)
Xiao K, Chen Y, Jiang X, Tyagi VK, Zhou Y, Water Res., 105, 470 (2016)
Zhou X, Jin W, Chen H, Chen C, Han S, Tu R, Wei W, Gao S, Xie G, Wang Q, Water Sci. Technol., 76, 2427 (2017)
Sun F, Xiao K, Zhu W, Withanage N, Zhou Y, Water Res., 130, 208 (2018)
Zhou X, Jiang GM, Zhang TT, Wang QL, Xie GJ, Yuan ZG, Bioresour. Technol., 192, 817 (2015)
Zhen GY, Lu XQ, Zhao YC, Chai XL, Niu DJ, Bioresour. Technol., 116, 259 (2012)
Zhen GY, Lu XQ, Wang BY, Zhao YC, Chai XL, Niu DJ, Zhao AH, Li YY, Song Y, Cao XY, Bioresour. Technol., 124, 29 (2012)
Li YF, Yuan XZ, Wang DB, Wang H, Wu ZB, Jiang LB, Mo D, Yang GJ, Guan RP, Zeng GM, Bioresour. Technol., 262, 294 (2018)
Liu F, Zhou L, Zhou J, Song X, Wang D, J. Hazard. Mater., 221-222, 170 (2012)
Thapa KB, Qi Y, Hoadley AFA, Colloids Surf. A: Physicochem. Eng. Asp., 334, 66 (2009)
Yu Q, Lei HY, Yu GW, Feng X, Li ZX, Wu ZC, Chem. Eng. J., 155(1-2), 88 (2009)
Zhen GY, Lu XQ, Li YY, Zhao YC, Bioresour. Technol., 136, 654 (2013)
Sheng G, Yu H, Li X, Biotechnol. Adv., 28, 882 (2010)
Qian X, Wang Y, Zheng H, Water Res., 88, 93 (2016)
Wilen B, Keiding K, Nielsen PH, Water Res., 34, 3933 (2000)
Zhen G, Wang J, Lu X, Su L, Zhu X, Zhou T, Zhao Y, Chemosphere, 221, 141 (2019)
Wang J, Yang M, Liu R, Hu C, Liu H, Qu J, Water Res., 160, 454 (2019)
Buyukkamaci N, Process Biochem., 39(11), 1503 (2004)
Zhen GY, Lu XQ, Niu J, Su LH, Chai XL, Zhao YC, Li YY, Song Y, Niu DJ, Chem. Eng. J., 233, 274 (2013)
Song K, Zhou X, Liu YQ, Xie GJ, Wang DB, Zhang TT, Liu CS, Liu P, Zhou BB, Wang QL, Chem. Eng. J., 295, 436 (2016)
Wang Q, Sun J, Song K, Zhou X, Wie W, Wang D, Xie G, Gong Y, Zhou B, J. Environ. Sci.-China, 67, 378 (2018)
Li Yifu, Yuan Xingzhong, Wu Zhibin, Wang Hou, Xiao Zhihua, Wu Yan, Chen Xiaohong, Zeng Guangming, Chem. Eng. J., 303, 636 (2016)
Liu C, Wu B, Chen XE, Xie S, Chem. Pap., 71, 2343 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로