Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 17, 2020
Accepted April 1, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Nickel-cobalt alloy coatings prepared by electrodeposition Part I: Cathodic current efficiency, alloy composition, polarization behavior and throwing power
Chemistry Department, Faculty of Science, Taibah University, Al Madinah Al Mounwara, 30002 Saudi Arabia 1Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
Korean Journal of Chemical Engineering, September 2020, 37(9), 1599-1608(10), 10.1007/s11814-020-0552-z
Download PDF
Abstract
A systematic study was carried out to electrodeposit Ni-Co alloy coatings from a complexing acidic glycine bath on copper substrates. The effects of [Co2+]/[Ni2+] ratio, gly concentration, pH, current density and temperature on the current efficiency, Co content in the coatings and on polarization behavior were investigated. It was found that the CCE of these baths has a wide range starting from 55% up to a maximum value of 99.3%, relying on the operating parameters and the bath constituent. However, the CCE decreased from 96.2% to 84.8% when the gly content was enhanced from 25 to 150 g/L. On the other hand, the Co content in the deposit reached 97% (wt%) at [Co2+]/ [Ni2+]=0.43, i=16 mA cm-2, t=10min, T=20 °C. The codeposition of Co and Ni from acidic gly baths obeys the anomalous type of codeposition. The kinetic results indicate that the Tafel slope increased in the case of alloy deposition, while both the transfer coefficient αc and the exchange current io decreased. Moreover, the obtained results indicated that increasing the Co2+ content in the electrolytic solution has an inhibiting impact on the kinetics of the nickel-cobalt alloy plating. The throwing power is enhanced with enhancing [Co2+]/[Ni2+] ratios, while the addition of gly decreases it. However, the outcomes of macrothrowing power, throwing index and Wagner numbers are in excellent accord.
References
Mahalingam T, Sundaram K, Velumani S, Raja M, Thanikaikarasan S, Kim YD, Asomoza R, Adv. Mater. Res., 68, 52 (2009)
Tian L, Xu J, Xiao S, Vacuum, 86, 27 (2011)
Carac G, Ispas A, J. Solid State Electrochem., 16, 3457 (2012)
Bakhit B, Akbari A, J. Coat. Technol. Res., 10(2), 285 (2013)
Esteves MC, Sumodjo PTA, Podlaha EJ, Electrochim. Acta, 56(25), 9082 (2011)
Karimzadeha A, Aliofkhazraeia M, Walsh FC, Surf. Coat. Technol., 372, 463 (2019)
Abdel-Karim R, Ramadan M, El-Raghy SM, J. Nanomaterials, 2018, 13 (2018)
Vasefi S, Parvari M, Korean J. Chem. Eng., 27(2), 422 (2010)
Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547 (2018)
Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802 (2012)
Jang KI, Hong E, Kim JH, Korean J. Chem. Eng., 30(3), 620 (2013)
He Y, Hwang S, Cullen DA, Uddin MA, Langhorst L, et al., Energy Environ. Sci., 12, 250 (2019)
Dokouzis A, Bella F, Theodosiou K, Gerbaldi C, Leftheriotis G, Mater. Today Energy, 15, 100365 (2020)
Kamppinen A, Aitola K, Poskela A, Miettunen K, Lund PD, Electrochim. Acta, 335, 135652 (2020)
Baptayev B, Aukenova A, Mustazheb D, Balanay MP, J. Photochem. Photobiol. A-Chem., 383, 11977 (2019)
Nita N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252 (2015)
Jovic VD, Jovic BM, Pavlovic MG, Maksimovic V, J. Solid State Electrochem., 10, 959 (2006)
Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, Korean J. Chem. Eng., 28(6), 1464 (2011)
Vijayakumar J, Mohan S, Kumar SA, Suseendiran SR, Pavithra S, Int. J. Hydrog. Energy, 38(25), 10208 (2013)
You YH, Gu CD, Wang XL, Tu JP, Surf. Coat. Technol., 206, 3632 (2012)
Li JM, Cai C, Song LX, Li JF, Zhang Z, Xue MZ, Liu YG, Trans. Nonferrous Met. Soc. China, 23, 2300 (2013)
Shi L, Sun CF, Gao P, Zhou F, Liu WM, Surf. Coat. Technol., 200, 4870 (2006)
Correia AN, Machado SAS, J. Appl. Electrochem., 33(5), 367 (2003)
Schwartz M, Myung NV, Nobe K, J. Electrochem. Soc., 151(7), C468 (2004)
Rahman IZ, Khaddem-Mousavi MV, Gandhi AA, Lynch TF, Rahman MA, J. Phys. Conference Series, 61, 523 (2007)
Harper CA, Electronic materials and processes handbook, McGraw Hill Professional, 1.6, New York NY (2003).
Lupi C, Dellera A, Pasquali M, Imperatori P, Surf. Coat. Technol., 205, 5394 (2011)
Wang LP, Gao Y, Xue QJ, Liu HW, Xu T, Appl. Surf. Sci., 242(3-4), 326 (2005)
Ergenema O, Sivaraman KM, Pane S, Pellicer E, Telekic A, Hirt AM, Baro MD, Nelson BJ, Electrochem. Acta, 56, 1399 (2011)
Golodnitsky D, Rosenberg Y, Ulus A, Electrochim. Acta, 47(17), 2707 (2002)
Yu-Fang Y, Bin D, Zhao-Hui W, Adv. Chem. Eng. Sci., 1, 27 (2011)
Vazquez-Arenas J, Pritzker M, J. Solid State Electrochem., 17, 419 (2013)
Gomez E, Pane S, Valles E, Electrochim. Acta, 51(1), 146 (2005)
El-Feky H, Negem M, Roy S, Helal N, Baraka A, Sci. China. Chem., 56(10), 1446 (2013)
Goldbach S, de Kermadec R, Lapicque F, J. Appl. Electrochem., 30(3), 277 (2000)
Karpuz A, Kockar H, Alper M, Appl. Surf. Sci., 257(8), 3632 (2011)
Karpuz A, Kockar H, Alper M, Karaagac O, Haciismailoglu M, Appl. Surf. Sci., 258(8), 4005 (2012)
Karpuz A, Kockar H, Alper M, J. Mater. Sci. Mater. Electron., 24, 3376 (2013)
Golodnitsky D, Gudin NV, Volyanuk GA, J. Electrochem. Soc., 147(11), 4156 (2000)
Idris J, Christian C, Gaius E, J. Nano Mat., 2013, 1 (2013)
Hassani S, Raeissi K, Azzi M, Li D, Golozar MA, Szpunar JA, Corrosion Sci., 51, 2371 (2009)
Bakhit B, Akbari A, J. Coat. Technol. Res., 10(2), 285 (2013)
Hassani S, Raeissi K, Golozar MA, J. Appl. Electrochem., 38(5), 689 (2008)
Marikkannu KR, Kalaignan GP, Vasudevan T, J. Alloy. Compd., 438, 332 (2007)
Pellicer E, Pane S, Sivaraman KM, Ergeneman O, Surinach S, Baro MD, Nelson BJ, Sort J, Mater. Chem. Phys., 130(3), 1380 (2011)
Taranina OA, Evreinova NV, Shoshina IA, Naraev VN, Tikhonov KI, Russ. J. Appl. Chem., 83(1), 58 (2010)
Zhang YH, Feng L, Qiu W, J. Mater. Sci., 54(13), 9507 (2019)
Tarozaite R, Sudavicius A, Sukackiene Z, Norkus E, Trans. IMF, 92(3), 146 (2014)
Gharahcheshmeh MH, Sohi MH, J. Appl. Electrochem., 40(8), 1563 (2010)
Wei JC, Schwartz M, Nobe K, J. Electrochem. Soc., 155(10), D660 (2008)
Boiadjieva T, Kovacheva D, Lyutov L, Monev M, J. Appl. Electrochem., 38(10), 1435 (2008)
Lacnjevac U, Jovic BM, Jovic VD, J. Electrochem. Soc., 159(5), D310 (2012)
Ibrahim MAM, Al Radadi RM, Mat. Chem. Phys., 151, 222 (2015)
Ibrahim MAM, Al Radadi RM, Int. J. Electrochem. Sci., 10, 4946 (2015)
Brenner A, Electrodeposition of alloys, Academic Press, New York, 1 (1963).
Ibrahim MAM, Bakdash RS, Surf. Coat. Technol., 282, 139 (2015)
Ibrahim MAM, Bakdash RS, Trans. IMF, 92(4), 218 (2014)
Ibrahim MAM, J. Chem. Technol. Biotechnol., 75(8), 745 (2000)
Muri R, Kurakane K, Sekine T, Bull. Chem. Soc. Jpn., 49, 335 (1976)
Mohamed AE, Rashwan SM, Abdel-Wahaab SM, Kamel MM, J. Appl. Electrochem., 33(11), 1085 (2003)
Rashwan SM, Mater. Chem. Phys., 89(2-3), 192 (2005)
Ibrahim MAM, Abd El Rehim SS, El Naggar MM, Abbass MA, J. Appl. Surf. Finish., 1(4), 293 (2006)
Smith RM, Martell AE, Motekaitis RJ, Critical Stability Constants of Metal Complexes Database, version 8.0, NIST, U.S. (2004).
Davies G, Kustin K, Pasternack RF, Inorg. Chem., 8, 1535 (1969)
Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S, Pure Appl. Chem., 86(2), 245 (2014)
Mouanga M, Ricq L, Douglade G, Douglade J, Bercot P, Surf. Coat. Technol., 201, 762 (2006)
Wagner C, J. Electrochem. Soc., 98, 116 (1951)
Tian L, Xu J, Xiao S, Vacuum, 86, 27 (2011)
Carac G, Ispas A, J. Solid State Electrochem., 16, 3457 (2012)
Bakhit B, Akbari A, J. Coat. Technol. Res., 10(2), 285 (2013)
Esteves MC, Sumodjo PTA, Podlaha EJ, Electrochim. Acta, 56(25), 9082 (2011)
Karimzadeha A, Aliofkhazraeia M, Walsh FC, Surf. Coat. Technol., 372, 463 (2019)
Abdel-Karim R, Ramadan M, El-Raghy SM, J. Nanomaterials, 2018, 13 (2018)
Vasefi S, Parvari M, Korean J. Chem. Eng., 27(2), 422 (2010)
Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547 (2018)
Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802 (2012)
Jang KI, Hong E, Kim JH, Korean J. Chem. Eng., 30(3), 620 (2013)
He Y, Hwang S, Cullen DA, Uddin MA, Langhorst L, et al., Energy Environ. Sci., 12, 250 (2019)
Dokouzis A, Bella F, Theodosiou K, Gerbaldi C, Leftheriotis G, Mater. Today Energy, 15, 100365 (2020)
Kamppinen A, Aitola K, Poskela A, Miettunen K, Lund PD, Electrochim. Acta, 335, 135652 (2020)
Baptayev B, Aukenova A, Mustazheb D, Balanay MP, J. Photochem. Photobiol. A-Chem., 383, 11977 (2019)
Nita N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252 (2015)
Jovic VD, Jovic BM, Pavlovic MG, Maksimovic V, J. Solid State Electrochem., 10, 959 (2006)
Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, Korean J. Chem. Eng., 28(6), 1464 (2011)
Vijayakumar J, Mohan S, Kumar SA, Suseendiran SR, Pavithra S, Int. J. Hydrog. Energy, 38(25), 10208 (2013)
You YH, Gu CD, Wang XL, Tu JP, Surf. Coat. Technol., 206, 3632 (2012)
Li JM, Cai C, Song LX, Li JF, Zhang Z, Xue MZ, Liu YG, Trans. Nonferrous Met. Soc. China, 23, 2300 (2013)
Shi L, Sun CF, Gao P, Zhou F, Liu WM, Surf. Coat. Technol., 200, 4870 (2006)
Correia AN, Machado SAS, J. Appl. Electrochem., 33(5), 367 (2003)
Schwartz M, Myung NV, Nobe K, J. Electrochem. Soc., 151(7), C468 (2004)
Rahman IZ, Khaddem-Mousavi MV, Gandhi AA, Lynch TF, Rahman MA, J. Phys. Conference Series, 61, 523 (2007)
Harper CA, Electronic materials and processes handbook, McGraw Hill Professional, 1.6, New York NY (2003).
Lupi C, Dellera A, Pasquali M, Imperatori P, Surf. Coat. Technol., 205, 5394 (2011)
Wang LP, Gao Y, Xue QJ, Liu HW, Xu T, Appl. Surf. Sci., 242(3-4), 326 (2005)
Ergenema O, Sivaraman KM, Pane S, Pellicer E, Telekic A, Hirt AM, Baro MD, Nelson BJ, Electrochem. Acta, 56, 1399 (2011)
Golodnitsky D, Rosenberg Y, Ulus A, Electrochim. Acta, 47(17), 2707 (2002)
Yu-Fang Y, Bin D, Zhao-Hui W, Adv. Chem. Eng. Sci., 1, 27 (2011)
Vazquez-Arenas J, Pritzker M, J. Solid State Electrochem., 17, 419 (2013)
Gomez E, Pane S, Valles E, Electrochim. Acta, 51(1), 146 (2005)
El-Feky H, Negem M, Roy S, Helal N, Baraka A, Sci. China. Chem., 56(10), 1446 (2013)
Goldbach S, de Kermadec R, Lapicque F, J. Appl. Electrochem., 30(3), 277 (2000)
Karpuz A, Kockar H, Alper M, Appl. Surf. Sci., 257(8), 3632 (2011)
Karpuz A, Kockar H, Alper M, Karaagac O, Haciismailoglu M, Appl. Surf. Sci., 258(8), 4005 (2012)
Karpuz A, Kockar H, Alper M, J. Mater. Sci. Mater. Electron., 24, 3376 (2013)
Golodnitsky D, Gudin NV, Volyanuk GA, J. Electrochem. Soc., 147(11), 4156 (2000)
Idris J, Christian C, Gaius E, J. Nano Mat., 2013, 1 (2013)
Hassani S, Raeissi K, Azzi M, Li D, Golozar MA, Szpunar JA, Corrosion Sci., 51, 2371 (2009)
Bakhit B, Akbari A, J. Coat. Technol. Res., 10(2), 285 (2013)
Hassani S, Raeissi K, Golozar MA, J. Appl. Electrochem., 38(5), 689 (2008)
Marikkannu KR, Kalaignan GP, Vasudevan T, J. Alloy. Compd., 438, 332 (2007)
Pellicer E, Pane S, Sivaraman KM, Ergeneman O, Surinach S, Baro MD, Nelson BJ, Sort J, Mater. Chem. Phys., 130(3), 1380 (2011)
Taranina OA, Evreinova NV, Shoshina IA, Naraev VN, Tikhonov KI, Russ. J. Appl. Chem., 83(1), 58 (2010)
Zhang YH, Feng L, Qiu W, J. Mater. Sci., 54(13), 9507 (2019)
Tarozaite R, Sudavicius A, Sukackiene Z, Norkus E, Trans. IMF, 92(3), 146 (2014)
Gharahcheshmeh MH, Sohi MH, J. Appl. Electrochem., 40(8), 1563 (2010)
Wei JC, Schwartz M, Nobe K, J. Electrochem. Soc., 155(10), D660 (2008)
Boiadjieva T, Kovacheva D, Lyutov L, Monev M, J. Appl. Electrochem., 38(10), 1435 (2008)
Lacnjevac U, Jovic BM, Jovic VD, J. Electrochem. Soc., 159(5), D310 (2012)
Ibrahim MAM, Al Radadi RM, Mat. Chem. Phys., 151, 222 (2015)
Ibrahim MAM, Al Radadi RM, Int. J. Electrochem. Sci., 10, 4946 (2015)
Brenner A, Electrodeposition of alloys, Academic Press, New York, 1 (1963).
Ibrahim MAM, Bakdash RS, Surf. Coat. Technol., 282, 139 (2015)
Ibrahim MAM, Bakdash RS, Trans. IMF, 92(4), 218 (2014)
Ibrahim MAM, J. Chem. Technol. Biotechnol., 75(8), 745 (2000)
Muri R, Kurakane K, Sekine T, Bull. Chem. Soc. Jpn., 49, 335 (1976)
Mohamed AE, Rashwan SM, Abdel-Wahaab SM, Kamel MM, J. Appl. Electrochem., 33(11), 1085 (2003)
Rashwan SM, Mater. Chem. Phys., 89(2-3), 192 (2005)
Ibrahim MAM, Abd El Rehim SS, El Naggar MM, Abbass MA, J. Appl. Surf. Finish., 1(4), 293 (2006)
Smith RM, Martell AE, Motekaitis RJ, Critical Stability Constants of Metal Complexes Database, version 8.0, NIST, U.S. (2004).
Davies G, Kustin K, Pasternack RF, Inorg. Chem., 8, 1535 (1969)
Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S, Pure Appl. Chem., 86(2), 245 (2014)
Mouanga M, Ricq L, Douglade G, Douglade J, Bercot P, Surf. Coat. Technol., 201, 762 (2006)
Wagner C, J. Electrochem. Soc., 98, 116 (1951)