ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 28, 2019
Accepted April 30, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

ZnO/conducting polymer bilayer via sequential spin-coating for enhanced UV sensing

Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Korea 1Department of Electrical Engineering, Gachon University, 1342 Seongnam Daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
jhhur@gachon.ac.kr
Korean Journal of Chemical Engineering, September 2020, 37(9), 1616-1622(7), 10.1007/s11814-020-0563-9
downloadDownload PDF

Abstract

Zinc oxide (ZnO) has been widely investigated as an important ultraviolet (UV) sensing material in view of its wide band gap (~3.4 eV). However, the fabrication of continuous thin films of ZnO generally requires complex, time-consuming, and expensive processes, such as sputtering and atomic layer deposition. Herein, we demonstrate a bilayer film consisting of a conducting polymer and ZnO nanoparticles sequentially deposited using a simple, rapid, and inexpensive two-step spin-coating process. In this approach, it is not necessary to have a continuous ZnO nanoparticle film as the active layer, because the conducting polymer deposited under the ZnO nanoparticles acts as a conductive and continuous supporting layer for the particles. Poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT: PSS) is used as the auxiliary layer to promote the efficient transport of photo-carriers generated from ZnO nanoparticles under UV light. As a result, under UV light (365 nm), photocurrents obtained from a ZnO/PEDOT: PSS bilayer film are significantly higher (~20 times) than that from a ZnO layer for a given voltage bias. The photoelectric performance can be further tuned by controlling the speed of spin-coating in the deposition of ZnO nanoparticles. The stability and photo response (rise and decay time) of the ZnO/PEDOT: PSS bilayer film under the repeated on-off condition are also reported.

References

Zhang S, Cai L, Wang T, Shi R, Miao J, Wei L, Chen Y, Sepulveda N, Wang C, Sci. Rep., 5, 17883 (2015)
Yu YQ, Luo LB, Wang MZ, Wang B, Zeng LH, Wu CY, Jie JS, Liu JW, Wang L, Yu SH, Nano Res., 8, 1098 (2015)
Ardakani AG, Pazoki M, Mahdavi SM, Bahrampour AR, Taghavinia N, Appl. Surf. Sci., 258(14), 5405 (2012)
Kim JY, Shin KY, Raza MH, Pinna N, Sung YE, Korean J. Chem. Eng., 36(7), 1157 (2019)
Farzadkia M, Rahmani K, Gholami M, Esrafili A, Rahmani A, Rahmani H, Korean J. Chem. Eng., 31(11), 2014 (2014)
Seo YS, Oh SG, Korean J. Chem. Eng., 36(12), 2118 (2019)
Yu K, Zhang Y, Xu F, Li Q, Zhu Z, Wan Q, Appl. Phys. Lett., 88, 153123 (2006)
Seong H, Yun J, Jun JH, Cho K, Kim S, Nanotechnology, 20, 245201 (2009)
Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Adv. Opt. Mater., 4, 238 (2016)
Liu X, Du H, Wang P, Lim TT, Sun XW, J. Mater. Chem. C, 2, 9536 (2014)
Lin D, Wu H, Zhang W, Li H, Pan W, Appl. Phys. Lett., 94, 172103 (2009)
Inamdar SI, Rajpure KY, J. Alloy. Compd., 595, 55 (2014)
Chen KJ, Hung FY, Chang SJ, Young SJ, J. Alloy. Compd., 479, 674 (2009)
Wang Z, Zhan X, Wang Y, Muhammad S, Huang Y, He J, Nanoscale, 4, 2678 (2012)
Tam TV, Hur SH, Chung JS, Choi WM, Sens. Actuators A-Phys., 233, 368 (2015)
Son DI, Yang YH, Kim TW, Park WI, Appl. Phys. Lett., 102, 021105 (2013)
Saenz-Trevizo A, Amezaga-Madrid P, Piza-Ruiz P, Antunez-Flores W, Miki-Yoshida M, Mat. Res., 19, 33 (2016)
Davis EA, Mott NF, Philos. Mag., 22, 0903 (1970)
Keem KH, Kim HS, Kim GT, Lee JS, Min BD, Cho KA, Sung MY, Kim SS, Appl. Phys. Lett., 84, 4376 (2004)
Zhang W, Bi X, Zhao X, Zhao Z, Zhu J, Dai S, Ku Y, Yang S, Org. Electron., 15, 3445 (2014)
Tyona MD, Adv. Mater. Res., 2, 195 (2013)
Mouhamad Y, Mokarian-Tabari P, Clarke N, Jones RAL, Geoghegan M, J. Appl. Phys., 116, 123513 (2014)
Meyerhofer D, J. Appl. Phys., 49, 3993 (1978)
Boruah BD, Mukherjee A, Sridhar S, Misra A, ACS Appl. Mater. Interfaces, 7, 10606 (2015)
Shin GH, Kim HY, Kim JH, Korean J. Chem. Eng., 35, 573 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로