Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 13, 2019
Accepted March 24, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Filler size effect in graphite/paraffine wax composite on electromagnetic interference shielding performance
Sosan Hwang
Chae Lin Kim
Yongha Kim
Min Gyu Song
Jaewon Lee
Sung-Hyeon Baeck
Sang Eun Shim†
Yingjie Qian†
Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
seshim@inha.ac.kr
Korean Journal of Chemical Engineering, September 2020, 37(9), 1623-1630(8), 10.1007/s11814-020-0550-1
Download PDF
Abstract
Graphite exhibits electromagnetic wave attenuation and high electrical conductivity. In this study, we analyzed the electromagnetic interference shielding effectiveness (EMI SE) performance and electric conductivity of composites fabricated by varying the size (mean size: 6-100 μm) of graphite fillers and explained resulting attributes through the relative permittivity and geometrical characteristics of the filler. When the graphite/paraffine wax composite was fabricated using large-sized graphite (KS150), the spacing between the graphite fillers became widened, enabling electromagnetic waves to leak through the gap. The analysis results indicated that KS150 graphite exhibited an EMI SE performance of under 10 dB when the filler content was 30 wt%. However, when the content was increased to 50 wt%, the EMI SE performance improved sharply to 40 dB. In contrast, when the composite was filled with small-sized graphite (KS6), having a high ratio of surface to volume, the EMI SE performance was greater than that with the largesized graphite at low loading. The results related to the EMI shielding performance of graphite-filled composites revealed that the size of the filler greatly affects the EMI SE. The composite using KS75 showed an EMI SE performance of 53.0 dB and electrical conductivity of 2,000 S/m.
Keywords
References
Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li JY, Chen Q, Yang WT, Bai J, Adv. Mater., 21(20), 2077 (2009)
Watts PCP, Hsu WK, Barnes A, Chambers B, Adv. Mater., 15(7-8), 600 (2003)
Chen ZP, Xu C, Ma CQ, Ren WC, Cheng HM, Adv. Mater., 25(9), 1296 (2013)
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
Chung DDL, Carbon, 39, 279 (2001)
Colaneri NF, Shacklette LW, IEEE Trans. Instrum. Meas., 41, 291 (1992)
Geetha S, Kumar KKS, Rao CRK, Vijayan M, Trivedi DC, J. Appl. Polym. Sci., 112(4), 2073 (2009)
Chu CW, Ouyang J, Tseng HH, Yang Y, Adv. Mater., 17(11), 1440 (2005)
Xiang C, Pan Y, Liu X, Sun X, Shi X, Guo J, Appl. Phys. Lett., 87, 123103 (2005)
Joo J, Epstein A, Appl. Phys. Lett., 65, 2278 (1994)
Joo J, Lee CY, J. Appl. Phys., 88, 513 (2000)
Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Guo T, Chen Y, Carbon, 45, 821 (2007)
Wang G, Gao Z, Tang S, Chen C, Duan F, Zhao S, Lin S, Feng Y, Zhou L, Qin Y, ACS Nano, 6, 11009 (2012)
Liu Z, Bai G, Huang H, Huang Y, Li F, Ma Y, Guo T, He X, Lin X, Gao H, Chen Y, J. Phys. Chem. C., 111, 13696 (2007)
Wang Y, Huang L, Liu Y, Wei D, Zhang H, Kajiura H, Li Y, Nano Res., 2, 865 (2009)
Wang Y, Jaiswal M, Lin M, Saha S, Ozyilmaz B, Loh KP, ACS Nano, 6, 1018 (2012)
Yang Y, Gupta MC, Dudley KL, Lawrence RW, Nano Lett., 5, 2131 (2005)
Hong SK, Kim KY, Kim TY, Kim JH, Park SW, Kim JH, Cho BJ, Nanotechnology, 23, 455704 (2012)
Yan D, Pang H, Li B, Vajtai R, Xu L, Ren P, Wang J, Li Z, Adv. Funct. Mater., 25, 559 (2015)
Song Q, Ye F, Yin X, Li W, Li H, Liu Y, Li K, Xie K, Li X, Fu Q, Cheng L, Zhang L, Wei B, Adv. Mater., 29, 170158 (2017)
Zhan Y, Wang J, Zhang K, Li Y, Meng Y, Yan N, Wei W, Peng F, Xia H, Chem. Eng. J., 44, 184 (2018)
Jia LC, Yan DX, Yang Y, Zhou D, Cui CH, Bianco E, Lou J, Vajtai R, Li B, Ajayan PM, Li ZM, Adv. Mater. Technol., 2, 170007 (2017)
Verma M, Verma P, Dhawan SK, Choudhary V, RSC Adv., 5, 97349 (2015)
Yang S, Li W, Bai S, Wang Q, J. Mater. Chem. C, 6, 11209 (2018)
Bellis GD, Tamburrano A, Dinescu A, Santarelli ML, Sarto MS, Carbon, 49, 4291 (2011)
EZQUERRA TA, KULESCZA M, CRUZ CS, BALTACALLEJA FJ, Adv. Mater., 2(12), 597 (1990)
Liu Q, Cao B, Feng C, Zhang W, Zhu S, Zhang D, Compos. Sci. Technol., 72, 1632 (2012)
Behnam G, Ghalichechian N, iWAT, 48 (2016).
Han Z, Fina A, Prog. Polym. Sci, 36, 914 (2011)
Tuz VR, Novitsky D V, Mladyonov PL, Prosvirnin SL, Novitskyet AV, JOSA B, 31, 2095 (2014)
Chen X, Grzegorczyk TM, Wu B, Pacheco J, Kong JA, Phys. Rev. E, 70, 016608 (2004)
Alu A, Yaghjian AD, Shore RA, Silveirinha MG, Phys. Rev. B, 84, 054305 (2011)
Nicolson A, Ross G, IEEE Trans. Instrum. Meas., 19, 377 (1970)
Weir WB, Proc IEEE, 62, 33 (1974)
Yu J, Huang X, Wu C, Jiang P, IEEE Trans. Dielectr. Electr. Insul., 18, 478 (2011)
Thomassin J, Jerome C, Pardoen T, Bailly C, Huynen I, Detrembleur C, Mater. Sci. Eng. R-Rep., 74, 211 (2013)
Watts PCP, Hsu WK, Barnes A, Chambers B, Adv. Mater., 15(7-8), 600 (2003)
Chen ZP, Xu C, Ma CQ, Ren WC, Cheng HM, Adv. Mater., 25(9), 1296 (2013)
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
Chung DDL, Carbon, 39, 279 (2001)
Colaneri NF, Shacklette LW, IEEE Trans. Instrum. Meas., 41, 291 (1992)
Geetha S, Kumar KKS, Rao CRK, Vijayan M, Trivedi DC, J. Appl. Polym. Sci., 112(4), 2073 (2009)
Chu CW, Ouyang J, Tseng HH, Yang Y, Adv. Mater., 17(11), 1440 (2005)
Xiang C, Pan Y, Liu X, Sun X, Shi X, Guo J, Appl. Phys. Lett., 87, 123103 (2005)
Joo J, Epstein A, Appl. Phys. Lett., 65, 2278 (1994)
Joo J, Lee CY, J. Appl. Phys., 88, 513 (2000)
Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Guo T, Chen Y, Carbon, 45, 821 (2007)
Wang G, Gao Z, Tang S, Chen C, Duan F, Zhao S, Lin S, Feng Y, Zhou L, Qin Y, ACS Nano, 6, 11009 (2012)
Liu Z, Bai G, Huang H, Huang Y, Li F, Ma Y, Guo T, He X, Lin X, Gao H, Chen Y, J. Phys. Chem. C., 111, 13696 (2007)
Wang Y, Huang L, Liu Y, Wei D, Zhang H, Kajiura H, Li Y, Nano Res., 2, 865 (2009)
Wang Y, Jaiswal M, Lin M, Saha S, Ozyilmaz B, Loh KP, ACS Nano, 6, 1018 (2012)
Yang Y, Gupta MC, Dudley KL, Lawrence RW, Nano Lett., 5, 2131 (2005)
Hong SK, Kim KY, Kim TY, Kim JH, Park SW, Kim JH, Cho BJ, Nanotechnology, 23, 455704 (2012)
Yan D, Pang H, Li B, Vajtai R, Xu L, Ren P, Wang J, Li Z, Adv. Funct. Mater., 25, 559 (2015)
Song Q, Ye F, Yin X, Li W, Li H, Liu Y, Li K, Xie K, Li X, Fu Q, Cheng L, Zhang L, Wei B, Adv. Mater., 29, 170158 (2017)
Zhan Y, Wang J, Zhang K, Li Y, Meng Y, Yan N, Wei W, Peng F, Xia H, Chem. Eng. J., 44, 184 (2018)
Jia LC, Yan DX, Yang Y, Zhou D, Cui CH, Bianco E, Lou J, Vajtai R, Li B, Ajayan PM, Li ZM, Adv. Mater. Technol., 2, 170007 (2017)
Verma M, Verma P, Dhawan SK, Choudhary V, RSC Adv., 5, 97349 (2015)
Yang S, Li W, Bai S, Wang Q, J. Mater. Chem. C, 6, 11209 (2018)
Bellis GD, Tamburrano A, Dinescu A, Santarelli ML, Sarto MS, Carbon, 49, 4291 (2011)
EZQUERRA TA, KULESCZA M, CRUZ CS, BALTACALLEJA FJ, Adv. Mater., 2(12), 597 (1990)
Liu Q, Cao B, Feng C, Zhang W, Zhu S, Zhang D, Compos. Sci. Technol., 72, 1632 (2012)
Behnam G, Ghalichechian N, iWAT, 48 (2016).
Han Z, Fina A, Prog. Polym. Sci, 36, 914 (2011)
Tuz VR, Novitsky D V, Mladyonov PL, Prosvirnin SL, Novitskyet AV, JOSA B, 31, 2095 (2014)
Chen X, Grzegorczyk TM, Wu B, Pacheco J, Kong JA, Phys. Rev. E, 70, 016608 (2004)
Alu A, Yaghjian AD, Shore RA, Silveirinha MG, Phys. Rev. B, 84, 054305 (2011)
Nicolson A, Ross G, IEEE Trans. Instrum. Meas., 19, 377 (1970)
Weir WB, Proc IEEE, 62, 33 (1974)
Yu J, Huang X, Wu C, Jiang P, IEEE Trans. Dielectr. Electr. Insul., 18, 478 (2011)
Thomassin J, Jerome C, Pardoen T, Bailly C, Huynen I, Detrembleur C, Mater. Sci. Eng. R-Rep., 74, 211 (2013)