ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 19, 2020
Accepted July 11, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of Cu-MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane

Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran 1Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
aminazh22@gmail.com, amin.azhdarpour@miau.ac.ir
Korean Journal of Chemical Engineering, January 2021, 38(1), 121-128(8), 10.1007/s11814-020-0636-9
downloadDownload PDF

Abstract

MOF-based membranes, which have appropriate MOF dispersion and suitable interaction, have shown high CO2 permeability and significant CO2/CH4 and CO2/N2 selectivity. In this study, a layer of Pebax was coated on polysulfone (PSF), which this layer incorporated by various content of Cu-MOFs to improve the performance (permeability and CO2/CH4 and CO2/N2 selectivity) of all membranes. Characterization techniques such as SEM, TGA, BET, and gas adsorption verified that Cu-BTC was successfully dispersed into the Pebax matrix. Pure CO2 and CH4 gases permeation experiments were performed to investigate the impact of Cu-MOFs on the gas permeability of prepared MOF-based membranes. The “Pebax” embedded by 15 wt% CuBTC and 15 wt% of NH2-CuBTC over PSF support exhibited higher gas separation performance compared to the pristine one. They demonstrated a CO2 permeability of 228.6 and 258.3 Barrer, respectively, while the blank membrane had a CO2 permeability of 110.6 Barrer. Embedding the NH2-Cu-BTC intensified the interaction between incorporated MOF particles and the polymer phase that led to increase the CO2/CH4 and CO2/N2 selectivity. In addition, the performance of prepared membranes was evaluated at various feed pressures with the range of 2-10 bar. The CO2/CH4 and CO2/N2 separation was enhanced as the feed pressure surged.

References

Choi S, Drese JH, Jones CW, ChemSusChem, 2, 796 (2009)
Shahrezaei K, Abedini R, Lashkarbolooki M, Rahimpour A, Korean J. Chem. Eng., 36(12), 2085 (2019)
Siagian UW, Raksajati A, Himma NF, Khoiruddin K, Wenten IG, J. Nat. Gas Sci. Eng., 67, 172 (2019)
Pellegrini LA, De Guido G, Valentina V, J. Nat. Gas Sci. Eng., 61, 303 (2019)
Aschenbrenner O, Styring P, Energy Environ. Sci., 3, 1106 (2010)
Tuinier MJ, Annaland MV, Kramer GJ, Kuipers JAM, Chem. Eng. Sci., 65(1), 114 (2010)
Lee J, Kim J, Kim H, Lee KS, Won W, J. Nat. Gas Sci. Eng., 61, 206 (2019)
Nematollahi MH, Babaei S, Abedini R, Korean J. Chem. Eng., 36(5), 763 (2019)
Bernardo P, Drioli E, Golemme G, Ind. Eng. Chem. Res., 48(10), 4638 (2009)
Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ, Angew. Chem.-Int. Edit., 56, 9292 (2017)
Bastani D, Esmaeili N, Asadollahi M, J. Ind. Eng. Chem., 19(2), 375 (2013)
Jeazet HBT, Staudt C, Janiak C, Dalton Trans., 41, 14003 (2012)
Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jinag Z, Energy Environ. Sci., 9, 1863 (2016)
Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
Freeman BD, Macromolecules, 32(2), 375 (1999)
Babarao R, Jiang J, Energy Environ. Sci., 1, 139 (2008)
Abedini R, Mosayebi A, Mokhtari M, Process Saf. Environ. Protect., 114, 229 (2018)
Pirzadeh K, Ghoreyshi AA, Rahimnejad M, Mohammadi M, Korean J. Chem. Eng., 35(4), 974 (2018)
Beiragh HB, Omidkhah M, Abedini R, Khosravi T, Pakseresht S, Asia-Pacific J. Chem. Eng., 11, 522 (2016)
Pechar TW, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong HK, Cornelius CJ, J. Membr. Sci., 277(1-2), 195 (2006)
Nezhadmoghadam E, Chenar MP, Omidkhah M, Nezhadmoghadam A, Abedini R, Korean J. Chem. Eng., 35(2), 526 (2018)
Weng TH, Tseng HH, Wey MY, Int. J. Hydrog. Energy, 35(13), 6971 (2010)
Zou X, Ren H, Zhu G, Chem. Commun., 49, 3925 (2013)
Zou X, Zhu G, Adv. Mater., 30, 170075 (2018)
Feng X, Ding X, Jiang D, Chem. Soc. Rev., 41, 6010 (2012)
Ding SY, Wang W, Chem. Soc. Rev., 42, 548 (2013)
Cooper AI, Adv. Mater., 21(12), 1291 (2009)
Mahajan R, Koros WJ, Ind. Eng. Chem. Res., 39(8), 2692 (2000)
Mozafari M, Abedini R, Rahimpour A, J. Mater. Chem. A, 6, 12380 (2018)
Wong KC, Goh PS, Ismail AF, Int. Biodeterior. Biodegrad., 102, 339 (2015)
Mozafari M, Rahimpour A, Abedini R, J. Ind. Eng. Chem., 85, 102 (2020)
Pirzadeh K, Esfandiari K, Ghoreyshi AA, Rahimnejad M, Korean J. Chem. Eng., 37(3), 513 (2020)
Venna SR, Lartey M, Li T, Spore A, Kumar S, Nulwala HB, Luebke DR, Rosi NL, Albenze E, J. Mater. Chem. A, 3, 5014 (2015)
Yang Q, Wiersum AD, Llewellyn PL, Guillerm V, Serre C, Maurin G, Chem. Commun., 47, 9603 (2011)
Dorosti F, Alizadehdakhel A, Chem. Eng. Res. Des., 136, 119 (2018)
Xiang L, Pan YC, Zeng GF, Jiang JL, Chen J, Wang CQ, J. Membr. Sci., 500, 66 (2016)
Azizi N, Hojjati MR, Zarei MM, Silicon, 10, 1461 (2018)
Shamsabadi AA, Seidi F, Salehi E, Nozari M, Rahimpour A, Soroush M, J. Mater. Chem. A, 5, 4011 (2017)
Li XQ, Jiang ZY, Wu YZ, Zhang HY, Cheng YD, Guo RL, Wu H, J. Membr. Sci., 495, 72 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로