Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 8, 2020
Accepted October 3, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhancement of CO2 desorption using ultrasound and vacuum in water scrubbing biogas upgrading system
1Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China 2School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China 3Laoling Shengli New Energy Co., Ltd, Dezhou 253600, China
fuqiangjin@126.com
Korean Journal of Chemical Engineering, January 2021, 38(1), 129-134(6), 10.1007/s11814-020-0686-z
Download PDF
Abstract
Ultrasound and vacuum were respectively employed to enhance CO2 desorption in a water scrubbing biogas upgrading system. Results showed that incomplete CO2 desorption could cause a high CO2 content in the water and seriously affect the purity of the product gas. Vacuum had a strong enhancement effect on CO2 desorption. When a vacuum of 0.04MPa was used to enhance CO2 desorption, the amount of the stripping air could be reduced to 1/16-th of that without enhancement, indicating that vacuum could greatly enhance CO2 desorption and significantly decrease the amount of the stripping air, which was expected to reduce a large amount of energy consumption. In contrast, the enhancement effect of ultrasound was not so obvious for CO2 desorption in the desorption column with air stripping, since the solution could be well desorbed by gas stripping, though ultrasound could strongly affect the static CO2 desorption.
References
Collet P, Flottes E, Favre A, Raynal L, Pierre H, Capela S, Peregrina C, Appl. Energy, 192, 282 (2017)
Zheng G, Zhang Q, Trans. CSAE, 17, 1 (2013)
Kokkoli A, Zhang YF, Angelidaki I, Bioresour. Technol., 247, 380 (2018)
Chen X, Liang F, Sheng K, Bao X, Agric. Eng., 7, 30 (2012)
Zhen F, Li D, Sun YM, Environ. Sci. Technol., 11, 103 (2012)
Yan SP, He QY, Zhao SF, Wang YY, Ai P, Chem. Eng. Process., 85, 125 (2014)
Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG, Biotechnol. Adv., 36, 452 (2018)
Kapoor R, Subbarao PMV, Vijay VK, Bioresour. Technol. Rep., 7, 100251 (2019)
Kapoor R, Subbarao PMV, Vijay VK, Shah G, Sahota S, Singh D, Verma M, Appl. Energy, 208, 1379 (2017)
Carroll JJ, Slupsky JD, Mather AE, J. Phys. Chem. Ref. Data, 20, 1201 (1991)
Munoz R, Meier L, Diaz I, Jeison D, Rev. Environ. Sci. Bio., 14, 727 (2015)
Niesner J, Jecha D, Stehlik P, Chem. Eng. Trans., 35, 517 (2013)
Rasi S, Lantela J, Rintala J, Fuel, 115, 539 (2014)
Sahota S, Shah G, Ghosh P, Kapoor R, Sengupta S, Singh P, Vijay V, Sahay A, Vijay VK, Thakur IS, Bioresour. Technol. Rep., 1, 79 (2018)
Wylock CE, Budzianowski WM, Chem. Eng. Sci., 170, 639 (2017)
Ryckebosch E, Drouillon M, Vervaeren H, Biomass Bioenergy, 35, 1633 (2011)
Lantela J, Rasi S, Lehtinen J, Rintala J, Appl. Energy, 92, 307 (2012)
Hosseinipour SA, Mehrpooya M, Renew. Energy, 130, 641 (2019)
Jin F, Zhang X, Xu H, Hua D, Li Y, Liang X, Zhao Y, Mu H, Renew. Energy Resour., 34, 1720 (2016)
Starr K, Gabarrell X, Villalba G, Talens L, Lombardi L, Waste Manag., 32, 991 (2012)
Patterson T, Esteves S, Dinsdale R, Guwy A, Energ. Policy, 39, 1806 (2011)
Jin F, Zhang X, Xu H, Hua D, Li Y, Zhao Y, Mu H, Si H, Liang X, Chinese Patent, 2017,104,278,132 (2017).
Huang W, Wang D, Zheng Z, Chinese Patent, 2011,201,949,557(2011).
Kong Q, Wang L, Li T, Li S, Zhao B, Modern Chem. Ind., 31(s1), 90 (2011)
Jin F, Zhang X, Xu H, Hua D, Zhang J, Chem. Ind. Eng. Pro., 33(4), 803 (2014)
The geology and mineral industry standard of P.R. China, DZT 0064.47 (1993).
Benizri D, Dietrich N, Labeyrie P, Hebrard G, Sep. Purif. Technol., 219, 169 (2019)
Rotunno P, Lanzini A, Leone P, Renew. Energy, 102, 417 (2017)
Petrier C, Francony A, Ultrason. Sonochem., 4, 295 (1997)
Feng C, Research of enhancing CO2 desorption from crude oil of CO2 flooding by ultrasound, China University of Petroleum (Beijing), Beijing (2017).
Xue J, Kang S, Hong T, Chin. J. Process. Eng., 6, 42 (2006)
Xue JQ, Meng LA, Shen BB, Du SY, Lan XZ, Chin. J. Chem. Eng., 15(4), 486 (2007)
Ying J, Eimer DA, Mathisen A, Sørensen H, Haugen HA, Energy Procedia, 63, 781 (2014)
Wang Z, Fang MX, Pan YL, Yan SP, Luo ZY, Chem. Eng. Sci., 93, 238 (2013)
Fang M, Wang Z, Yan S, Cen Q, Luo Z, Int. J. Greenh. Gas Con., 9, 507 (2012)
zhang C, Chem. Eng., 3, 16 (1982)
Feng C, Yuan Y, Xing X, J. Petrochem. UNIV., 29, 93 (2016)
Han GZ, Wang HJ, Fluid Phase Equilib., 338, 269 (2013)
Ying JR, Eimer DA, Brakstad F, Haugen HA, Energy, 163, 168 (2018)
Ying JR, Eimer DA, Mathisen A, Brakstad F, Haugen HA, Energy, 173, 218 (2019)
Zheng G, Zhang Q, Trans. CSAE, 17, 1 (2013)
Kokkoli A, Zhang YF, Angelidaki I, Bioresour. Technol., 247, 380 (2018)
Chen X, Liang F, Sheng K, Bao X, Agric. Eng., 7, 30 (2012)
Zhen F, Li D, Sun YM, Environ. Sci. Technol., 11, 103 (2012)
Yan SP, He QY, Zhao SF, Wang YY, Ai P, Chem. Eng. Process., 85, 125 (2014)
Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG, Biotechnol. Adv., 36, 452 (2018)
Kapoor R, Subbarao PMV, Vijay VK, Bioresour. Technol. Rep., 7, 100251 (2019)
Kapoor R, Subbarao PMV, Vijay VK, Shah G, Sahota S, Singh D, Verma M, Appl. Energy, 208, 1379 (2017)
Carroll JJ, Slupsky JD, Mather AE, J. Phys. Chem. Ref. Data, 20, 1201 (1991)
Munoz R, Meier L, Diaz I, Jeison D, Rev. Environ. Sci. Bio., 14, 727 (2015)
Niesner J, Jecha D, Stehlik P, Chem. Eng. Trans., 35, 517 (2013)
Rasi S, Lantela J, Rintala J, Fuel, 115, 539 (2014)
Sahota S, Shah G, Ghosh P, Kapoor R, Sengupta S, Singh P, Vijay V, Sahay A, Vijay VK, Thakur IS, Bioresour. Technol. Rep., 1, 79 (2018)
Wylock CE, Budzianowski WM, Chem. Eng. Sci., 170, 639 (2017)
Ryckebosch E, Drouillon M, Vervaeren H, Biomass Bioenergy, 35, 1633 (2011)
Lantela J, Rasi S, Lehtinen J, Rintala J, Appl. Energy, 92, 307 (2012)
Hosseinipour SA, Mehrpooya M, Renew. Energy, 130, 641 (2019)
Jin F, Zhang X, Xu H, Hua D, Li Y, Liang X, Zhao Y, Mu H, Renew. Energy Resour., 34, 1720 (2016)
Starr K, Gabarrell X, Villalba G, Talens L, Lombardi L, Waste Manag., 32, 991 (2012)
Patterson T, Esteves S, Dinsdale R, Guwy A, Energ. Policy, 39, 1806 (2011)
Jin F, Zhang X, Xu H, Hua D, Li Y, Zhao Y, Mu H, Si H, Liang X, Chinese Patent, 2017,104,278,132 (2017).
Huang W, Wang D, Zheng Z, Chinese Patent, 2011,201,949,557(2011).
Kong Q, Wang L, Li T, Li S, Zhao B, Modern Chem. Ind., 31(s1), 90 (2011)
Jin F, Zhang X, Xu H, Hua D, Zhang J, Chem. Ind. Eng. Pro., 33(4), 803 (2014)
The geology and mineral industry standard of P.R. China, DZT 0064.47 (1993).
Benizri D, Dietrich N, Labeyrie P, Hebrard G, Sep. Purif. Technol., 219, 169 (2019)
Rotunno P, Lanzini A, Leone P, Renew. Energy, 102, 417 (2017)
Petrier C, Francony A, Ultrason. Sonochem., 4, 295 (1997)
Feng C, Research of enhancing CO2 desorption from crude oil of CO2 flooding by ultrasound, China University of Petroleum (Beijing), Beijing (2017).
Xue J, Kang S, Hong T, Chin. J. Process. Eng., 6, 42 (2006)
Xue JQ, Meng LA, Shen BB, Du SY, Lan XZ, Chin. J. Chem. Eng., 15(4), 486 (2007)
Ying J, Eimer DA, Mathisen A, Sørensen H, Haugen HA, Energy Procedia, 63, 781 (2014)
Wang Z, Fang MX, Pan YL, Yan SP, Luo ZY, Chem. Eng. Sci., 93, 238 (2013)
Fang M, Wang Z, Yan S, Cen Q, Luo Z, Int. J. Greenh. Gas Con., 9, 507 (2012)
zhang C, Chem. Eng., 3, 16 (1982)
Feng C, Yuan Y, Xing X, J. Petrochem. UNIV., 29, 93 (2016)
Han GZ, Wang HJ, Fluid Phase Equilib., 338, 269 (2013)
Ying JR, Eimer DA, Brakstad F, Haugen HA, Energy, 163, 168 (2018)
Ying JR, Eimer DA, Mathisen A, Brakstad F, Haugen HA, Energy, 173, 218 (2019)