ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 3, 2020
Accepted August 17, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Nickel-cobalt alloy coatings prepared by electrodeposition Part II: Morphology, structure, microhardness, and electrochemical studies

Chemistry Department, Faculty of Science, Taibah University, Al Madinah Al Mounwara, 30002 Saudi Arabia 1Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
Korean Journal of Chemical Engineering, January 2021, 38(1), 152-162(11), 10.1007/s11814-020-0661-8
downloadDownload PDF

Abstract

A study was carried out to synthesize Ni-Co alloy coatings electrochemically from complex acidic glycine (gly) bath. The impacts of some operating parameters such as Co2+ to Ni2+ concentration ratios in the bath, gly concentrations, pH, applied current, plating time and temperature on the morphology of Ni-Co alloy were investigated. The microstructure, microhardness, and electrochemical studies were also investigated. The electrochemical studies utilized cyclic voltammetry, anodic linear stripping voltammetry, and potentiostatic current-time transient techniques. It was realized that gly lowers the cathodic overvoltage for the Co2+ deposition while promoting cathodic overvoltage of Ni2+ deposition. Accordingly, the concurrent codeposition of Co2+ and Ni2+ ions was simplified. The morphology of Ni-Co alloy is significantly dependent on the operating parameters rather than on the bath composition. Moreover, increasing either pH or bath temperature produces Ni-Co deposits free from cracking. The roughness of the alloy is decreased in the presence of gly as shown by the atomic force microscope (AFM) study. In the presence of gly, the microhardness increases from 387 to 970 kg f mm?2, i.e., it increased more than two-and-a-half times. On the other hand, X-ray diffraction analysis (XRD) data show that the crystallinity decreases with enhancing the percentage of cobalt in the deposits.

References

Wang GF, Chan KC, Zhang KF, Scr. Mater., 54, 765 (2006)
Chang LM, An MZ, Guo HF, Shi SY, Appl. Surf. Sci., 253(4), 2132 (2006)
Wang LP, Gao Y, Xue QJ, Liu HW, Xu T, Appl. Surf. Sci., 242(3-4), 326 (2005)
Qiao GY, Jing TF, Wang N, Gao YW, Zhao X, Zhou JF, Wang W, Electrochim. Acta, 51(1), 85 (2005)
Vasefi S, Parvari M, Korean J. Chem. Eng., 27(2), 422 (2010)
Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547 (2018)
Golodnitsky D, Rosenberg Y, Ulus A, Electrochim. Acta, 47(17), 2707 (2002)
Kim D, Park DY, Yoo BY, Sumodjo PTA, Myung NV, Electrochim. Acta, 48(7), 819 (2003)
Karimzadeha A, Aliofkhazraeia M, Walsh FC, Surf. Coat. Technol., 372, 463 (2019)
Lupi C, Dilone D, Miner. Eng., 14(11), 1403 (2001)
Idris J, Christian C, Gaius E, J. Nanomaterials, 2013, 1 (2013)
Correia AN, Machado SAS, J. Appl. Electrochem., 33(5), 367 (2003)
Schwartz M, Myung NV, Nobe K, J. Electrochem. Soc., 151(7), C468 (2004)
Tian LL, Xu JC, Qiang CW, Appl. Surf. Sci., 257(10), 4689 (2011)
Farzaneh MA, Zamanzad-Ghavidel MR, Raeissi K, Golozar MA, Saatchi A, Kabi S, Appl. Surf. Sci., 257(13), 5919 (2011)
El-Feky H, Negem M, Roy S, Helal N, Baraka A, Sci. China. Chem., 56(10), 1446 (2013)
Sanaty-Zadeh A, Raeissi K, Saidi A, J. Alloy. Compd., 485(1-2), 402 (2009)
Qiao GY, Jing TF, Wang N, Gao YW, Zhao X, Zhou JF, Wang W, J. Electrochem. Soc., 153(5), C305 (2006)
Gomez E, Pane S, Valles E, Electrochim. Acta, 51(1), 146 (2005)
Gomez E, Pellicer E, Valles E, J. Electroanal. Chem., 580(2), 222 (2005)
Golodnitsky D, Gudin NV, Volyanuk GA, J. Electrochem. Soc., 147(11), 4156 (2000)
Hassani S, Raeissi K, Golozar MA, J. Appl. Electrochem., 38(5), 689 (2008)
Vijayakumar J, Mohan S, Yadav SS, J. Alloy. Compd., 509, 9692 (2011)
Ibrahim MAM, Al Radadi RM, Int. J. Electrochem. Sci., 10, 4946 (2015)
Ibrahim M, Al Radadi RM, Mat. Chem. Phys., 151, 222 (2015)
Al Radadi RM, Ibrahim MAM, Korean J. Chem. Eng., in press.
Taranina OA, Evreinova NV, Shoshina IA, Naraev VN, Tikhonov KI, Russ. J. Appl. Chem., 83(1), 58 (2010)
Zhang YH, Feng L, Qiu W, J. Mater. Sci., 54(13), 9507 (2019)
Gharahcheshmeh MH, Sohi MH, J. Appl. Electrochem., 40(8), 1563 (2010)
Wei JC, Schwartz M, Nobe K, J. Electrochem. Soc., 155(10), D660 (2008)
Boiadjieva T, Kovacheva D, Lyutov L, Monev M, J. Appl. Electrochem., 38(10), 1435 (2008)
Lacnjevac U, Jovic BM, Jovic VD, J. Electrochem. Soc., 159(5), D310 (2012)
Messaoudi Y, Fenineche N, Guittoum A, Azizi A, Schmerber G, Dinia A, J. Mater. Sci. Mater. Electron., 24, 2962 (2013)
Abd El Maguid EA, Abd El Rehim SS, Mostafa EM, Trans. IMF, 77, 188 (1999)
Cui CQ, Jiang SP, Tseung ACC, J. Electrochem. Soc., 137, 3418 (1990)
Swathirajan S, J. Electrochem. Soc., 133, 671 (1986)
Fratesi R, Roventi G, Giuliani G, Tomachuk CR, J. Appl. Electrochem., 27(9), 1088 (1997)
Lupi C, Dellera A, Pasquali M, Imperatori P, Surf. Coat. Technol., 205, 5394 (2011)
Kharmachi I, Dhouibi L, Bercot P, Rezrazi M, J. Mater. Environ. Sci., 7(5), 1670 (2016)
Abd El Rehim SS, Ibrahim MAM, Dankeria MM, Emad M, Trans. IMF, 80(3), 105 (2002)
Hagarova M, Jakubeczyova D, Cervova J, Int. J. Electrochem. Sci., 10, 9968 (2015)
Ma C, Wang SC, Walsh FC, Trans IMF, 93(2), 104 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로