Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 23, 2020
Accepted October 3, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Electrochemical analysis on how structural and compositional modification of electrode affects power generation in reverse electrodialysis
1Division of Energy Engineering, Kangwon National University, 346 Jungang-ro, Samcheok 25913, Korea 2Department of Chemical Engineering, Kangwon National University, 346 Jungang-ro, Samcheok 25913, Korea
ischoi@kangwon.ac.kr
Korean Journal of Chemical Engineering, January 2021, 38(1), 170-178(9), 10.1007/s11814-020-0690-3
Download PDF
Abstract
We suggest a modified Ti-based electrode for reverse electrodialysis to increase power density and retain long-term durability. Specifically, a mesh-type Ti electrode and electrochemically fabricated Pt/Ti electrode are employed in the reverse electrodialysis single cell. The electrode systems are compared in terms of power output, resistance, specific capacitance, and redox-couple reaction kinetics near the electrode surface. Among the electrodes, Pt/Ti meshembedded cell exhibits the highest jmax (-16.13 A m-2) and Pmax (-0.702 W m-2). The improvement in performance is ascribed to the reduced resistance associated with heterogeneous charge transfer and to the enlarged electrochemical surface area, verified by impedance analysis, and by monitoring the capacitive behavior of the electrodes, respectively. The highest exchange current density of Pt/Ti mesh electrode is attributed to facile electron transfer and reduced power loss in the electrode compartment. Furthermore, the Pt/Ti mesh electrode allows stable operation of reverse electrodialysis for an extended time. Finally, we demonstrate the power generation of a reverse electrodialysis stack built up with multiple pairs of ion exchange membranes for potential commercial application.
References
Pattle RE, Nature, 174, 660 (1954)
Loeb S, Norman RS, Science, 189, 654 (1975)
Loeb S, J. Membr. Sci., 1, 49 (1976)
Thorsen T, Holt T, J. Membr. Sci., 335(1-2), 103 (2009)
Pattle RE, Chem. Prog. Eng., 35, 351 (1955)
Wick GL, Schmitt WR, Mar. Technol. Soc. J., 11, 16 (1977)
Post JW, Hamelers HVM, Buisman CJN, Environ. Sci. Technol., 42, 5785 (2008)
Veerman J, Saakes M, Metz SJ, Harmsen GJ, Chem. Eng. J., 166(1), 256 (2011)
Weinstein JN, Leitz FB, Science, 191, 557 (1976)
Lacey RE, Ocean Engng., 7, 1 (1980)
Dlugolecki P, Nymeijer K, Metz S, Wessling M, J. Membr. Sci., 319(1-2), 214 (2008)
Veerman J, de Jong RM, Saakes M, Metz SJ, Harmsen GJ, J. Membr. Sci., 343(1-2), 7 (2009)
Vermass DA, Saakes M, Nijmeijer K, J. Membr. Sci., 385-386, 234 (2011)
Vermaas DA, Saakes M, Nijmeijer K, J. Membr. Sci., 453, 312 (2014)
Guler E, Elizen R, Saakes M, Nijmeijer K, J. Membr. Sci., 458, 136 (2014)
Kwon K, Lee SJ, Li L, Han C, Kim D, Int. J. Energy Res., 38, 530 (2014)
Hong JG, Chen YS, J. Membr. Sci., 460, 139 (2014)
Guler E, Zhang Y, Saakes M, Nijmeijer K, ChemSusChem, 5, 2262 (2012)
Dlugolecki P, Gambier A, Nijmeijer K, Wessling M, Environ. Sci. Technol., 43, 6888 (2009)
Vermass DA, Saakes M, Nijmeijer K, Environ. Sci. Technol., 45, 7089 (2011)
Dlugolecki P, Dabrowska J, Nijmeijer K, Wessling M, J. Membr. Sci., 347(1-2), 101 (2010)
Balster J, Stamatialis DF, Wessling M, J. Membr. Sci., 360(1-2), 185 (2010)
Kim DK, Duan C, Chem YF, Majumdar A, Microfluid. Nanofluid., 9, 1215 (2010)
Jagur-Grodzinski J, Kramer R, Ind. Eng. Chem. Process. Des. Dev., 25, 443 (1986)
Turek M, Bandura B, Desalination, 205(1-3), 67 (2007)
Veerman J, Post JW, Saakes M, Metz SJ, Harmsen GJ, J. Membr. Sci., 310(1-2), 418 (2008)
Veerman J, Saakes M, Metz SJ, Harmsen GJ, J. Appl. Electrochem., 40(8), 1461 (2010)
Burheim OS, Seland F, Pharoah JG, Kjelstrup S, Desalination, 285, 147 (2012)
Scialdone O, Guarisco C, Grispo S, D' Angelo A, Galia A, J. Electroanal. Chem., 681, 66 (2012)
Suda F, Matsuo T, Ushioda D, Energy, 32(3), 165 (2007)
Vermass DA, Bajracharya S, Sales BB, Saakes M, Hamelers B, Nijmeijer K, Energy Environ. Sci., 6, 643 (2013)
Choi I, Han JY, Yoo SJ, Henkensmeier D, Kim JY, Lee SY, Han J, Nam SW, Kim HJ, Jang JH, Bull. Kor. Chem. Soc., 37, 1010 (2016)
Kim KS, Ryoo W, Chun MS, Chung GY, Desalination, 318, 79 (2013)
Pawlowski S, Crespo JG, Velizarov S, J. Membr. Sci., 462, 96 (2014)
Vermass DA, Veerman J, Yip NY, Elimelech M, Saakes M, Nijmeijer K, ACS Sustain. Chem. Eng., 1, 1295 (2013)
Gurreri L, Tamburini A, Cipollina A, Micale G, Ciofalo M, J. Membr. Sci., 468, 133 (2014)
Tedesco M, Cipollina A, Tamburini A, Bogle IDL, Micale G, Chem. Eng. Res. Des., 93, 441 (2015)
Tedesco M, Cipollina A, Tamburini A, van Baak W, Micale G, Desalin. Water Treat., 49, 404 (2012)
Hong JG, Zhang W, Luo J, Chen YS, Appl. Energy, 110, 244 (2013)
Audinos R, J. Power Sources, 10, 203 (1983)
Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547 (2018)
Zhuo K, An CY, Kannan PK, Seo N, Park YS, Chung CH, Korean J. Chem. Eng., 34(5), 1483 (2017)
Daniilidis A, Vermaas DA, Herber R, Nijmeijer K, Renew. Energy, 64, 123 (2014)
Zhu XP, He WH, Logan BE, J. Membr. Sci., 494, 154 (2015)
Park JS, Choi JH, Woo JJ, Moon SH, J. Colloid Interface Sci., 300(2), 655 (2006)
Quere D, Annu. Rev. Mater. Res., 38, 71 (2008)
Hitchcock SJ, Carroll NT, Nicholas MG, J. Mater. Sci., 16, 714 (1981)
Loeb S, Norman RS, Science, 189, 654 (1975)
Loeb S, J. Membr. Sci., 1, 49 (1976)
Thorsen T, Holt T, J. Membr. Sci., 335(1-2), 103 (2009)
Pattle RE, Chem. Prog. Eng., 35, 351 (1955)
Wick GL, Schmitt WR, Mar. Technol. Soc. J., 11, 16 (1977)
Post JW, Hamelers HVM, Buisman CJN, Environ. Sci. Technol., 42, 5785 (2008)
Veerman J, Saakes M, Metz SJ, Harmsen GJ, Chem. Eng. J., 166(1), 256 (2011)
Weinstein JN, Leitz FB, Science, 191, 557 (1976)
Lacey RE, Ocean Engng., 7, 1 (1980)
Dlugolecki P, Nymeijer K, Metz S, Wessling M, J. Membr. Sci., 319(1-2), 214 (2008)
Veerman J, de Jong RM, Saakes M, Metz SJ, Harmsen GJ, J. Membr. Sci., 343(1-2), 7 (2009)
Vermass DA, Saakes M, Nijmeijer K, J. Membr. Sci., 385-386, 234 (2011)
Vermaas DA, Saakes M, Nijmeijer K, J. Membr. Sci., 453, 312 (2014)
Guler E, Elizen R, Saakes M, Nijmeijer K, J. Membr. Sci., 458, 136 (2014)
Kwon K, Lee SJ, Li L, Han C, Kim D, Int. J. Energy Res., 38, 530 (2014)
Hong JG, Chen YS, J. Membr. Sci., 460, 139 (2014)
Guler E, Zhang Y, Saakes M, Nijmeijer K, ChemSusChem, 5, 2262 (2012)
Dlugolecki P, Gambier A, Nijmeijer K, Wessling M, Environ. Sci. Technol., 43, 6888 (2009)
Vermass DA, Saakes M, Nijmeijer K, Environ. Sci. Technol., 45, 7089 (2011)
Dlugolecki P, Dabrowska J, Nijmeijer K, Wessling M, J. Membr. Sci., 347(1-2), 101 (2010)
Balster J, Stamatialis DF, Wessling M, J. Membr. Sci., 360(1-2), 185 (2010)
Kim DK, Duan C, Chem YF, Majumdar A, Microfluid. Nanofluid., 9, 1215 (2010)
Jagur-Grodzinski J, Kramer R, Ind. Eng. Chem. Process. Des. Dev., 25, 443 (1986)
Turek M, Bandura B, Desalination, 205(1-3), 67 (2007)
Veerman J, Post JW, Saakes M, Metz SJ, Harmsen GJ, J. Membr. Sci., 310(1-2), 418 (2008)
Veerman J, Saakes M, Metz SJ, Harmsen GJ, J. Appl. Electrochem., 40(8), 1461 (2010)
Burheim OS, Seland F, Pharoah JG, Kjelstrup S, Desalination, 285, 147 (2012)
Scialdone O, Guarisco C, Grispo S, D' Angelo A, Galia A, J. Electroanal. Chem., 681, 66 (2012)
Suda F, Matsuo T, Ushioda D, Energy, 32(3), 165 (2007)
Vermass DA, Bajracharya S, Sales BB, Saakes M, Hamelers B, Nijmeijer K, Energy Environ. Sci., 6, 643 (2013)
Choi I, Han JY, Yoo SJ, Henkensmeier D, Kim JY, Lee SY, Han J, Nam SW, Kim HJ, Jang JH, Bull. Kor. Chem. Soc., 37, 1010 (2016)
Kim KS, Ryoo W, Chun MS, Chung GY, Desalination, 318, 79 (2013)
Pawlowski S, Crespo JG, Velizarov S, J. Membr. Sci., 462, 96 (2014)
Vermass DA, Veerman J, Yip NY, Elimelech M, Saakes M, Nijmeijer K, ACS Sustain. Chem. Eng., 1, 1295 (2013)
Gurreri L, Tamburini A, Cipollina A, Micale G, Ciofalo M, J. Membr. Sci., 468, 133 (2014)
Tedesco M, Cipollina A, Tamburini A, Bogle IDL, Micale G, Chem. Eng. Res. Des., 93, 441 (2015)
Tedesco M, Cipollina A, Tamburini A, van Baak W, Micale G, Desalin. Water Treat., 49, 404 (2012)
Hong JG, Zhang W, Luo J, Chen YS, Appl. Energy, 110, 244 (2013)
Audinos R, J. Power Sources, 10, 203 (1983)
Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547 (2018)
Zhuo K, An CY, Kannan PK, Seo N, Park YS, Chung CH, Korean J. Chem. Eng., 34(5), 1483 (2017)
Daniilidis A, Vermaas DA, Herber R, Nijmeijer K, Renew. Energy, 64, 123 (2014)
Zhu XP, He WH, Logan BE, J. Membr. Sci., 494, 154 (2015)
Park JS, Choi JH, Woo JJ, Moon SH, J. Colloid Interface Sci., 300(2), 655 (2006)
Quere D, Annu. Rev. Mater. Res., 38, 71 (2008)
Hitchcock SJ, Carroll NT, Nicholas MG, J. Mater. Sci., 16, 714 (1981)