Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 22, 2020
Accepted September 21, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Unfavorable energy integration of reactive dividing wall column for simultaneous esterification reactions
Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Korea
jaewlee@kaist.ac.kr
Korean Journal of Chemical Engineering, January 2021, 38(1), 195-203(9), 10.1007/s11814-020-0682-3
Download PDF
Abstract
Thermal integration in a reactive dividing wall column (RDWC) can dramatically reduce energy consumption. This study, however, addresses unfavorable energy integration of the concurrent esterification of butyl, amyl, and hexyl alcohols in the RDWC. The reaction kinetics and vapor-liquid-liquid equilibrium of reactive mixtures are utilized to assess the feasibility of energy integration in a multi-partitioned RDWC. The thermal integration effect of an RDWC is elucidated by comparing its energy efficiency with that of the direct sequential configuration of a reactive distillation column followed by a non-reactive distillation column. The unfavorable thermal integration in the RDWC originates from the large internal flow to satisfy the product purities. Therefore, a single RDWC sequence showed higher energy consumption and total annual cost than the direct RD sequence for the simultaneous triple esterification.
Keywords
References
Stankiewicz AI, Moulijn JA, Chem. Eng. Prog., 96(1), 22 (2000)
Novita FJ, Lee HY, Lee MY, Korean J. Chem. Eng., 35(4), 926 (2018)
Kang D, Lee JW, Appl. Catal. B: Environ., 186, 41 (2016)
Long NVD, Lee S, Lee M, Chem. Eng. Process. Process Intensif., 49, 825 (2010)
Malone F, Doherty MF, Ind. Eng. Chem. Res., 39, 3953 (2000)
Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1953 (2000)
Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1965 (2000)
Im HJ, Park JI, Lee JW, Korean J. Chem. Eng., 36(10), 1680 (2019)
Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105 (1997)
Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162 (2003)
Qasim F, Shin JS, Park SJ, Korean J. Chem. Eng., 35(5), 1185 (2018)
Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
Hiwale RS, Bhate NV, Mahajan YS, Mahajani SM, Int. J. Chem. React. Eng., 2, 1 (2004)
Navarro MA, Javaloyes J, Caballero JA, Grossmann IE, Comput. Chem. Eng., 36, 149 (2012)
Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403 (2011)
Namgung K, Lee H, Jang W, Mo H, Lee JW, Chem. Eng. Process. Process Intensif., 154, 108048 (2020)
Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709 (2007)
Kang D, Lee JW, Ind. Eng. Chem. Res., 54(12), 3175 (2015)
Lee HC, Jang WJ, Lee JW, Korean J. Chem. Eng., 36(6), 954 (2019)
Li HS, Li T, Li CL, Fang J, Dong LH, Chin. J. Chem. Eng., 27(1), 136 (2019)
Kiss AA, Suszwalak DJPC, Comput. Chem. Eng., 38, 74 (2012)
Zheng L, Cai WF, Zhang XB, Wang Y, Chem. Eng. Process., 111, 127 (2017)
Jiang W, Lee H, Han JI, Lee JW, Ind. Eng. Chem. Res., 58(19), 8206 (2019)
Jang W, Namgung K, Lee H, Mo H, Lee JW, Ind. Eng. Chem. Res., 59(5), 1966 (2020)
Lee MJ, Wu HT, Lin HM, Ind. Eng. Chem. Res., 39(11), 4094 (2000)
Schmitt M, Hasse H, Ind. Eng. Chem. Res., 45(12), 4123 (2006)
Wu YC, Lee HY, Lee CH, Huang HP, Chien IL, Ind. Eng. Chem. Res., 52(48), 17184 (2013)
Lee HY, Yen LT, Chien IL, Huang HP, Ind. Eng. Chem. Res., 48(15), 7186 (2009)
Mutalib MIA, Smith R, Chem. Eng. Res. Des., 76(3), 308 (1998)
Luyben WL, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).
Novita FJ, Lee HY, Lee MY, Korean J. Chem. Eng., 35(4), 926 (2018)
Kang D, Lee JW, Appl. Catal. B: Environ., 186, 41 (2016)
Long NVD, Lee S, Lee M, Chem. Eng. Process. Process Intensif., 49, 825 (2010)
Malone F, Doherty MF, Ind. Eng. Chem. Res., 39, 3953 (2000)
Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1953 (2000)
Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1965 (2000)
Im HJ, Park JI, Lee JW, Korean J. Chem. Eng., 36(10), 1680 (2019)
Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105 (1997)
Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162 (2003)
Qasim F, Shin JS, Park SJ, Korean J. Chem. Eng., 35(5), 1185 (2018)
Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
Hiwale RS, Bhate NV, Mahajan YS, Mahajani SM, Int. J. Chem. React. Eng., 2, 1 (2004)
Navarro MA, Javaloyes J, Caballero JA, Grossmann IE, Comput. Chem. Eng., 36, 149 (2012)
Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403 (2011)
Namgung K, Lee H, Jang W, Mo H, Lee JW, Chem. Eng. Process. Process Intensif., 154, 108048 (2020)
Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709 (2007)
Kang D, Lee JW, Ind. Eng. Chem. Res., 54(12), 3175 (2015)
Lee HC, Jang WJ, Lee JW, Korean J. Chem. Eng., 36(6), 954 (2019)
Li HS, Li T, Li CL, Fang J, Dong LH, Chin. J. Chem. Eng., 27(1), 136 (2019)
Kiss AA, Suszwalak DJPC, Comput. Chem. Eng., 38, 74 (2012)
Zheng L, Cai WF, Zhang XB, Wang Y, Chem. Eng. Process., 111, 127 (2017)
Jiang W, Lee H, Han JI, Lee JW, Ind. Eng. Chem. Res., 58(19), 8206 (2019)
Jang W, Namgung K, Lee H, Mo H, Lee JW, Ind. Eng. Chem. Res., 59(5), 1966 (2020)
Lee MJ, Wu HT, Lin HM, Ind. Eng. Chem. Res., 39(11), 4094 (2000)
Schmitt M, Hasse H, Ind. Eng. Chem. Res., 45(12), 4123 (2006)
Wu YC, Lee HY, Lee CH, Huang HP, Chien IL, Ind. Eng. Chem. Res., 52(48), 17184 (2013)
Lee HY, Yen LT, Chien IL, Huang HP, Ind. Eng. Chem. Res., 48(15), 7186 (2009)
Mutalib MIA, Smith R, Chem. Eng. Res. Des., 76(3), 308 (1998)
Luyben WL, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).