ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 3, 2020
Accepted September 18, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Ampicillin adsorption onto amine-functionalized magnetic graphene oxide: synthesis, characterization and removal mechanism

VNU University of Education, Vietnam National University, Hanoi, Vietnam 1Institute for Tropical Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam 2School of Chemical Engineering and Physical Science, Lovely Professional University Phagwara, Punjab 144411, India
-
Korean Journal of Chemical Engineering, January 2021, 38(1), 22-31(10), 10.1007/s11814-020-0678-z
downloadDownload PDF

Abstract

There are various chemical, physical and biological methods that have been applied to remove antibiotic residuals from aqueous environment. We investigated the removal of ampicillin (AMP) by a novel nanometer-size Fe3O4/graphene oxide/aminopropyltrimethoxysilane (FGOA). Based on the sol-gel method, the graphene oxide (GO) was first modified by aminopropyltrimethoxysilane (APTMS) to form GOA material containing both acidic and basic surface functional groups. The nanomagnetic iron oxide was then decorated to the GOA surface at various weight ratios by ultra-sonication in ethanol, resulting in different FGOA samples. The as-synthesized FGOA had single-layer structure and parallel array-like well-distributed Fe3O4. In laboratory-scale, the AMP treatment efficiency by FGOA with the ratio of Fe3O4 :GOA as 1 : 5 ratio reached the highest value around 94% within 100 min and only lost 1% after five regeneration cycles. The maximum adsorption capacity of FGOA was 294mg g-1, significantly much higher than the previously published materials applied to AMP uptake. Interestingly, the optimum pH of FGOA ranged extensively from 4 to 9, revealing high application potential to real wastewater without any pH adjustment. The reasonable mechanism might be mainly attributed to electrostatic attraction, hydrophilic, and π-π interaction.

References

Anthony A, Adekunle F, Thor S, Phys. Chem. Earth, 105, 177 (2018)
Peters L, Olson L, Khu DT, Linnros S, Le NK, Hanberger H, Hoang NT, Tran DM, Larsson M, PloS One, 14, 5 (2019)
Seo J, Park SY, Kim HH, Lee C, Advanced Technologies and Best Practices for Environmental Sustainability, Springer, 91 (2020).
Adhikari S, Kim DH, Korean J. Chem. Eng., 36(3), 468 (2019)
Ji SH, Jang WS, Son JW, Kim DH, Korean J. Chem. Eng., 35(12), 2474 (2018)
Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 35(2), 567 (2018)
Ellis AG, Bloomberg GR, Ann. Allergy Asthma Immunol., 122, 422 (2019)
Dahl C, Stigum H, Valeur J, Iszatt N, Lenters V, Peddada S, Bjørnholt JV, Midtvedt T, Mandal S, Eggesbø M, Int. J. Epidemiol., 47, 1658 (2018)
Fox-Lewis A, Takata J, Miliya T, Lubell Y, Soeng S, Sar P, Rith K, McKellar G, Wuthiekanun V, McGonagle E, Emerg. Infect. Dis., 24, 841 (2018)
Nairi V, Medda L, Monduzzi M, Salis A, J. Colloid Interface Sci., 497, 217 (2007)
Elmolla ES, Chaudhuri M, J. Hazard. Mater., 173(1-3), 445 (2010)
Elmolla ES, Chaudhuri M, Desalination, 252(1-3), 46 (2010)
Rahardjo AK, Susanto MJJ, Kurniawan A, Indraswati N, Ismadji S, J. Hazard. Mater., 190(1-3), 1001 (2011)
Weng X, Cai W, Lan R, Sun Q, Chen Z, Environ. Pollut., 236, 562 (2018)
Chia RYH, Removal of ampicillin and ciprofloxacin by GAC adsorption, Nanyang Technological University Publication, Singapore (2018).
Priya B, Raizada P, Singh N, Thakur P, Singh P, J. Colloid Interface Sci., 479, 271 (2016)
Minh TD, Lee BK, J. Mater. Cycles Waste Manag., 19, 1022 (2017)
Minh TD, Lee BK, Environ. Sci. Pollut. Res., 25, 21901 (2018)
Minh TD, Lee BK, Linh PH, Res. Chem. Intermed., 44, 6515 (2018)
Aliofkhazraei M, et al., Graphene science handbook: Electrical and optical properties, Routledge & CRC Press Publications, United Kingdom (2016).
Duman O, Tunc S, Bozoglan BK, Polat TG, J. Alloy. Compd., 687, 370 (2016)
Duman O, Tunc S, Polat TG, Bozogan BK, Carbohydr. Polym., 147, 79 (2016)
Duman O, Ozcan C, Polat TG, Tunc S, Environ. Pollut., 244, 723 (2019)
Maan KS, et al., New dimensions in production and utilization of hydrogen, Elsevier Publications, Netherlands, 321 (2020).
Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo P, Cocuzza M, Pirri CF, ACS Appl. Energy Mater., 1, 4440 (2018)
Oh WC, Cho KY, Jung CH, Areerob Y, Sci. Rep., 10, 1 (2020)
Fagiolari L, Bella F, Energy Environ. Sci., 12, 3437 (2019)
Rakspun J, Chiang YJ, Chen JY, Yeh CY, Amornkitbamrung V, Chanlek N, Vailikhit V, Hasin P, Sol. Energy, 203, 175 (2020)
Perreault LL, Colo F, Meligrana G, Kim K, Fiorilli S, Bella F, Nair JR, Vitale-Brovarone C, Florek J, Kleitz F, Adv. Energy Mater., 8, 180243 (2018)
Zolin L, Nair JR, Beneventi D, Bella F, Destro M, Jagdale P, Cannavaro I, Tagliaferro A, Chaussy D, Geobaldo F, Carbon, 107, 811 (2016)
Minh TD, Lee BK, Nguyen-Le MT, J. Environ. Manage., 209, 452 (2018)
Nguyen-Le MT, Lee BK, Tran DM, J. Ind. Eng. Chem., 56, 225 (2017)
Hanh NT, Tri NLM, Van Thuan D, Tung MHT, et al.,, J. Photochem. Photobiol. A-Chem., 382, 111923 (2019)
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806 (2010)
Guan H, Wang J, Tan S, Han Q, Liang Q, Ding M, Korean J. Chem. Eng., 37(6), 1097 (2020)
Kalantari M, Kazemeini M, Arpanaei A, Mater. Res. Bull., 48(6), 2023 (2013)
Ha HT, Huong NT, Minh TD, Lee BK, Rene ER, Bao TV, et al., J. Environ. Chem. Eng., 146, 042006 (2020)
Ha HT, Huong NT, Lee BK, Duc DS, Trung VB, et al.,, Res. Chem. Intermed., 46, 5023 (2020)
Duman O, Tunc S, Polat TG, Microporous Mesoporous Mater., 210, 176 (2015)
Duman O, Tunc S, Polat TG, Appl. Clay Sci., 109, 22 (2015)
Carabineiro S, Thavorn-Amornsri T, Pereira M, Figueiredo J, Water Res., 45, 4583 (2011)
Carabineiro SAC, Thavorn-amornsri T, Pereira MFR, Serp P, Figueiredo JL, Catal. Today, 186(1), 29 (2012)
Wang GP, Wu T, Li YJ, Sun DJ, Wang Y, Huang XH, Zhang GC, Liu RH, J. Chem. Technol. Biotechnol., 87(5), 623 (2012)
Balarak D, Mostafapour FK, Azarpira H, Joghataei A, J. Pharm. Res. Int., 20, 1 (2017)
Wu Y, Liu W, Wang Y, Hu X, He Z, Chen X, Zhao Y, Int. J. Environ. Res. Public Health, 15, 2652 (2018)
Ayranci E, Duman O, Chem. Eng. J., 156(1), 70 (2010)
Duman O, Ayranci E, J. Hazard. Mater., 174(1-3), 359 (2010)
Ghaedi M, Tashkhourian J, Pebdani AA, Sadeghian B, Ana FN, Korean J. Chem. Eng., 28(12), 2255 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로