ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 10, 2020
Accepted September 21, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption

Shandong Key Laboratory of Reactions and Isolations of Muti-phase Liquid, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China 1Fundamental Chemistry Experiment Center (Gaomi), Qingdao University of Science & Technology, Gaomi, 261500, China
feigao@tju.edu.cn
Korean Journal of Chemical Engineering, January 2021, 38(1), 46-54(9), 10.1007/s11814-020-0684-1
downloadDownload PDF

Abstract

Copper oxide modified activated carbon (CuO/AC) composites for the CO2 capture were synthesized via a facile assembly strategy associated with a direct solid-state heat dispersion process by introducing CuO into AC using Cu(NO3)2 as the copper source. The synthesized CuO/AC composites with various CuO contents were characterized by powder X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption measurement, and the CO2 adsorption performance was investigated. The characterization results indicate that the Cu(NO3)2 species was well dispersed into the AC pore channels and then converted to a highly dispersed CuO after the activation process. The adsorption results reveal that the CO2 adsorption performance can be significantly improved by introducing CuO onto the AC surfaces, and the CuO(0.6)/AC composite with a CuO loading of 0.6mmol/g AC shows a high CO2 adsorption capacity and adsorption selectivity and displays an excellent reversibility. Additionally, the calculated adsorption heat values of CO2 on the CuO(0.6)/AC composite are in the range of 27.3 to 33.9 kJ/mol.

References

Zheng XS, Streimikiene D, Balezentis T, Mardani A, Cavallaro F, Liao H, J. Clean Prod., 234, 1113 (2019)
Wang Z, Goyal N, Liu L, Tsang DCW, Shang J, Liu W, Li G, Chem. Eng. J., 396, 125376 (2020)
Li N, Zhang X, Shi M, Zhou S, Resour. Conserv. Recycl., 121, 11 (2017)
Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497 (2013)
Miguez JL, Porteiro J, Perez-Orozco R, Patino D, Rodriguez S, Appl. Energy, 211, 1282 (2018)
Liu B, Zhang M, Yang X, Wang T, J. Taiwan Inst. Chem. E., 103, 67 (2019)
Manianglung C, Pacia RM, Ko YS, Korean J. Chem. Eng., 36(8), 1267 (2019)
Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467 (2002)
Figueroa JD, Fout T, Plasynski S, McIlvried H, Int. J. Greenh. Gas Con., 2, 9 (2008)
Bae SY, Zaini N, Kamarudin KSN, Yoo KS, Kim JS, Othman MR, Korean J. Chem. Eng., 35(3), 764 (2018)
Wang Q, Luo JZ, Zhou ZY, Borgna A, Energy Environ. Sci., 4, 42 (2011)
Wang Y, Du T, Fang X, Meng D, Li G, Liu L, Korean J. Chem. Eng., 35(8), 1642 (2018)
Montagnaro F, Silvestre-Albero A, Silvestre-Albero J, Rodriguez-Reinoso F, Erto A, Lancia A, Balsamo M, Microporous Mesoporous Mater., 209, 157 (2015)
Wang S, Xu Y, Miao J, Liu M, Ren B, Zhang L, Liu Z, J. Clean Prod., 253, 120023 (2020)
Lee CS, Ong YL, Aroua MK, Daud WMAW, Chem. Eng. J., 219, 558 (2013)
Burri H, Anjum R, Gurram RB, Mitta H, Mutyala S, Jonnalagadda M, Korean J. Chem. Eng., 36(9), 1482 (2019)
Srenscek-Nazzal J, Kielbasa K, Appl. Surf. Sci., 494, 137 (2019)
Hu XE, Liu L, Luo X, Xiao G, Shiko E, Zhang R, Fan X, et al., Appl. Energy, 260, 114244 (2020)
Mutyala S, Yakout SM, Ibrahim SS, Jonnalagadda M, Mitta H, New J. Chem., 43, 9725 (2019)
Zhang J, Singh R, Webley PA, Microporous Mesoporous Mater., 111, 478 (2008)
Upendar K, Kumar ASH, Lingaiah N, Rao KSR, Prasad PSS, Int. J. Greenh. Gas Con., 10, 191 (2012)
Ding J, Yu C, Lu J, Wei X, Wang W, Pan G, Appl. Energy, 263, 114681 (2020)
Zhao B, Ma L, Shi H, Liu K, Zhang J, J. CO2 Util., 25, 315 (2018)
Chanapattharapol KC, Krachuamram S, Youngme S, Microporous Mesoporous Mater., 245, 8 (2017)
Jang DI, Park SJ, Fuel, 102, 439 (2012)
Kim BJ, Cho KS, Park SJ, J. Colloid Interface Sci., 342(2), 575 (2010)
Li M, Huang K, Schott JA, Wu Z, Dai S, Microporous Mesoporous Mater., 249, 34 (2017)
Sun MZ, Gu QF, Hanif A, Wang TQ, Shang J, Chem. Eng. J., 370, 1450 (2019)
Tlili N, Grevillot G, Vallieres C, Int. J. Greenh. Gas Control, 3, 519 (2009)
Raganati F, Chirone R, Ammendola P, Ind. Eng. Chem. Res., 59(8), 3593 (2020)
Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. J., 372, 529 (2019)
Bonjour J, Chalfen JB, Meunier F, Ind. Eng. Chem. Res., 41(23), 5802 (2002)
Yang RT, Adsorbents: Fundamentals and applications, John Wiley & Sons, Hoboken (2003).
Hong PT, Lee BK, Microporous Mesoporous Mater., 241, 155 (2017)
Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari M, Int. J. Greenh. Gas Con., 3, 249 (2009)
Cho K, Kim J, Beum HT, Jung T, Han SS, J. Hazard. Mater., 344, 857 (2018)
Gao F, Wang Y, Wang X, Wang S, Adsorption, 22, 1013 (2016)
Freundlich HMF, J. Phys. Chem., 57, 385 (1906)
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Sips R, J. Chem. Phys., 16, 490 (1948)
Toth J, Acta Chem. Acad. Hung., 69, 311 (1971)
Myers AL, Prausnitz JM, AIChE J., 11, 121 (1965)
Su P, Zhang X, Xu Z, Zhang G, Shen C, Meng Q, New J. Chem., 43, 17267 (2019)
Pirzadeh K, Esfandiari K, Ghoreyshi AA, Rahimnejad M, Korean J. Chem. Eng., 37(3), 513 (2020)
Yin J, Cai J, Yin C, Gao L, Zhou J, J. Environ. Chem. Eng., 4, 958 (2016)
Chen YW, Wu HX, Lv DF, Yang WY, Qiao ZW, Li Z, Xia QB, Energy Fuels, 32(8), 8676 (2018)
Lee SY, Park SJ, J. Ind. Eng. Chem., 23, 1 (2015)
Plaza MG, Garcia S, Rubiera F, Pis JJ, Pevida C, Chem. Eng. J., 163(1-2), 41 (2010)
Mason JA, Sumida K, Herm ZR, Krishna R, Long JR, Energy Environ. Sci., 4, 3030 (2011)
Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B, Nat. Commun., 3, 954 (2012)
Wu YF, Lv ZQ, Zhou X, Peng JJ, Tang YN, Li Z, Chem. Eng. J., 355, 815 (2019)
Lou W, Yang J, Li L, Li J, J. Solid State Chem., 213, 224 (2014)
Zhou Z, Mei L, Ma C, Xu F, Xiao J, Xia Q, Li Z, Chem. Eng. J., 147, 109 (2016)
Mei L, Jiang T, Zhou X, Li YW, Wang HH, Li Z, Chem. Eng. J., 321, 600 (2017)
McEwen J, Hayman JD, Yazaydin AO, Chem. Phys., 412, 72 (2013)
Xu X, Zhao X, Sun L, Liu X, J. Nat. Gas Chem., 17, 391 (2008)
Hefti M, Marx D, Joss L, Mazzotti M, Microporous Mesoporous Mater., 215, 215 (2015)
Gao F, Wang S, Chen G, Duan J, Dong J, Wang W, Adsorption, 26, 701 (2020)
Belmabkhout Y, Sayari A, Chem. Eng. Sci., 64(17), 3729 (2009)
Beutekamp S, Harting P, Adsorption, 8, 255 (2002)
Brea P, Delgado JA, Agueda VI, Uguina MA, Chem. Eng. J., 355, 279 (2019)
Raganati F, Chirone R, Ammendola P, Chem. Eng. Res. Des., 133, 347 (2018)
Proll T, Schony G, Sprachmann G, Hofbauer H, Chem. Eng. Sci., 141, 166 (2016)
Schony G, Dietrich F, Fuchs J, Proll T, Hofbauer H, Powder Technol., 316, 519 (2017)
Raganati F, Chirone R, Ammendola P, Ind. Eng. Chem. Res., 56(44), 12811 (2017)
Ammendola P, Raganati F, Chirone R, Fuel Process. Technol., 134, 494 (2015)
Raganati F, Ammendola P, Chirone R, Sep. Purif. Technol., 167, 24 (2016)
Liang WW, Liu ZW, Peng JJ, Zhou X, Wang X, Li Z, Energy Fuels, 33(1), 493 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로