ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 11, 2020
Accepted September 21, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous pro

School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
sunbaizhong@126.com
Korean Journal of Chemical Engineering, January 2021, 38(1), 55-63(9), 10.1007/s11814-020-0685-0
downloadDownload PDF

Abstract

In view of the importance of inert-atmosphere sludge pyrolysis for effective waste recycling and carbon emission reduction, this study probed the effects of temperature (300-700 °C) and atmosphere (100% N2, 10 CO2/90% N2, or 100% CO2) on the properties of biochar and gases obtained by sludge pyrolysis in a horizontal tube furnace. The emissions of NO, SO2, H2S, and CO increased with increasing temperature, as the inhibitory effect of CO2 on the formation of these gases (observed at <500 °C) concomitantly weakened and was superseded by the reaction of CO2 with carbon at higher temperature to afford gaseous products. The specific surface area (SBET) and pore volume of the biochar produced in the presence of CO2 increased with increasing temperature up to 500 °C, while at higher temperatures the inhibitory effect of CO2 on pore structure development resulted in a decreased SBET and an increased macropore content. These results show that pyrolysis is an effective treatment method for sludge; it can remove 48% N and 50% S in sludge and mitigate the emission of polluting gases. When CO2 participates in the pyrolysis reaction, the SBET of biochar increases significantly. In general, sludge biochar has the potential to be applied as fuel and as an adsorbent.

References

Tian Y, Zhang J, Zuo W, Chen L, Cui YN, Tan T, Environ. Sci. Technol., 47, 3498 (2013)
Zandi S, Nemati B, Jahanianfard D, Davarazar M, Sheikhnejad Y, Mostafaie A, Kamali M, Aminabhavi TM, J. Environ. Manage., 247, 462 (2019)
Yang G, Zhang GG, Wang HC, Water Res., 78, 60 (2015)
Sun SJ, Zhao ZB, Li B, Ma LX, Fu DL, Sun XZ, Thape S, Shen JM, Qi H, Wu YN, Environ. Pollut., 245, 764 (2019)
Feng YH, Yu TC, Chen DZ, Xu GL, Wan L, Zhang Q, Hu YY, Energy Fuels, 32(1), 581 (2018)
Aldobouni IA, Fadhil AB, Saied IK, Energy Sources Part A-Recovery Util. Environ. Eff., 37(24), 2617 (2015)
Fadhil AB, Alhayali MA, Saeed LI, Fuel, 210, 165 (2017)
Gao LY, Deng JH, Huang GF, Li K, Cai KZ, Liu Y, Huang F, Bioresour. Technol., 272, 114 (2019)
Yue Y, Cui L, Lin QM, Li GT, Zhao XR, Chemosphere, 173, 551 (2017)
Yuan HR, Lu T, Huang HY, Zhao DD, Kobayashi N, Chen Y, J. Anal. Appl. Pyrolysis, 112, 284 (2015)
Udayanga WDC, Veksha A, Giannis A, Lim TT, Waste Manage., 83, 131 (2019)
Wang XD, Chi QQ, Liu XJ, Wang Y, Chemosphere, 216, 698 (2019)
He Y, Ma XQ, Bioresour. Technol., 189, 71 (2015)
Duan LB, Zhao CS, Zhou W, Qu CR, Chen XP, Energy Fuels, 23(7), 3826 (2009)
Prabowo B, Aziz M, Umeki K, Susanto H, Yan M, Yoshikawa K, Appl. Energy, 158, 97 (2015)
Tan ZG, Zou JH, Zhang LM, Huang QY, J. Mater. Cycles. Waste Manag., 20, 1036 (2018)
Zhu XF, Li K, Zhang LQ, Wu X, Zhu XF, Energy Conv. Manag., 157, 288 (2018)
Guizani C, Sanz FJE, Salvador S, Fuel, 116, 310 (2014)
Konczak M, Oleszczuk P, Rozylo K, J. CO2 Util., 29, 20 (2019)
Bai YH, Wang P, Yan LJ, Liu F, Xie K, J. Anal. Appl. Pyrolysis, 104, 202 (2013)
Gao SP, Zhao JT, Wang ZQ, Wang JF, Fang YT, Huang JJ, J. Fuel Chem. Technol., 41, 257 (2013)
Liu ZW, Zhang FX, Liu HL, Ba F, Yan SJ, Hu JH, Bioresour. Technol., 249, 983 (2018)
International A. ASTM E711-87. Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter (2004).
Xu ZX, Xu L, Cheng JH, He ZX, Wang Q, Hu X, Fuel Process. Technol., 182, 37 (2018)
Xiong R, Dong L, Yu JA, Zhang XF, Jin L, Xu GW, Fuel Process. Technol., 91(8), 810 (2010)
Attar A, Fuel, 57, 201 (1978)
Duan YQ, Duan LB, Anthony EJ, Zhao CS, Fuel, 189, 98 (2017)
Guo HQ, Wang XL, Liu FR, Wang MJ, Zhang H, Hu RS, Hu YF, Fuel, 206, 716 (2017)
Wang HQ, Li KK, Guo ZH, Fang MX, Luo ZY, Cen KF, Carbon Resour. Convers., 1, 94 (2018)
Kim JH, Oh JI, Lee J, Kwon EE, Energy, 179, 163 (2019)
Khanmohammadi Z, Afyuni M, Mosaddeghi MR, Waste Manage. Res., 33, 275 (2015)
Cho DW, Kwon G, Yoon K, Tsang YF, Ok YS, Kwon EE, Song H, Energy Conv. Manag., 145, 1 (2017)
Song YH, Ma QN, He WJ, Energy Fuels, 31(1), 217 (2017)
Wang L, Sandquist J, Varhegyi G, Guell BM, Energy Fuels, 27(10), 6098 (2013)
Wen R, Yuan B, Wang Y, Cao WM, Liu Y, Jia Y, Liu Q, Environ. Sci. Pollut. Res., 25, 5105 (2018)
Liu Y, Ran CM, Siyal AA, Song YM, Jiang ZH, Dai JJ, et al., J. Hazard. Mater., 396, 122619 (2020)
He XY, Liu ZX, Niu WJ, Yang L, Zhou T, Qin D, Niu ZY, Yuan QX, Energy, 143, 746 (2018)
Chen T, Zhang YX, Wang HT, Lu WJ, Zhou ZY, Zhang YC, Ren LL, Bioresour. Technol., 164, 47 (2014)
Sannigrahi P, Ragauskas AJ, Tuskan GA, Biofuel. Bioprod. Biorefin., 4, 209 (2010)
Sanchez ME, Menendez JA, Dominguez A, Pis JJ, Martinez O, Calvo LF, Biomass Bioenergy, 33, 933 (2009)
Liu ZG, Han GH, Fuel, 158, 159 (2015)
Wang ZH, MA XQ, Yao ZL, Yu QH, Wang Z, Lin YS, Appl. Therm. Eng., 128, 662 (2018)
Udayanga WDC, Veksha A, Giannis A, Lisak G, Lim TT, Energy Conv. Manag., 196, 1410 (2019)
Zielinska A, Oleszczuk , Charmas B, Zieba JS, Patkowska SP, J. Anal. Appl. Pyrolysis, 112, 201 (2015)
Pallares J, Cencerrado AG, Arauzo I, Biomass Bioenergy, 115, 64 (2018)
Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S, J. Environ. Manage., 146, 189 (2014)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Pure. Appl. Chem., 57, 603 (1985)
Downie A, et al., Physical properties of biochar, Earthscan, London (2009).
Jindarom C, Meeyoo V, Kitiyanan B, Rirksomboon T, Rangsunvigit P, J. Chem. Eng., 133, 239 (2007)
Miliotti E, Casini D, Rosi L, Lotti G, Rizzo AM, Chiaramonti D, Biomass Bioenergy, 139, 105593 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로