ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 8, 2020
Accepted September 6, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Microbial fuel cell for oilfield produced water treatment and reuse: Modelling and process optimization

Department of Energy Engineering, Qom University of Technology, Qom, Iran 1Division of Energy Systems, Department of Chemical Engineering, University of Qom, Qom, Iran 2Chemical Engineering Section, Sohar University, Sohar, 311, Oman 3Botany & Microbiology Department, Faculty of Science, New Valley University, 72511 El-Kharga, Egypt
-
Korean Journal of Chemical Engineering, January 2021, 38(1), 72-80(9), 10.1007/s11814-020-0674-3
downloadDownload PDF

Abstract

Oilfield produced water is one of the vast amounts of wastewater that pollute the environment and cause serious problems. In this study, the produced water was treated in a microbial fuel cell (MFC), and response surface methodology and central composite design (RSM/CCD) were used as powerful tools to optimize the process. The results of two separate parameters of sulfonated poly ether ether ketone (SPEEK) as well as nanocomposite composition (CNT/Pt) on the chemical oxygen demand (COD) removal and power generation were discussed. The nanocomposite was analyzed using XRD, SEM, and TEM. Moreover, the degree of sulfonation (DS) was measured by NMR. A quadratic model was utilized to forecast the removal of COD and power generation under distinct circumstances. To obtain the maximum COD removal along with maximum power generation, favorable conditions were achieved by statistical and mathematical techniques. The findings proved that MFC could remove 92% of COD and generate 545mW/m2 of power density at optimum conditions of DS=80; and CNT/Pt of 14 wt% CNT- 86 wt% Pt.

References

Hao J, Mohammadkhani S, Shahverdi H, Esfahany MN, Shapiro A, J. Pet. Sci. Eng., 179, 276 (2019)
Subramanian K, Rao TN, Balakrishnan A, Nanofluids and their engineering applications, 1st Ed., CRC Press, Boca Raton (2019).
Safari M, Mohammadi M, Sedighi M, J. Appl. Geophy., 138, 33 (2017)
Agi A, Junin R, Alqatta AYM, Gbadamosi A, Yahya A, Abbas A, Ultrason. Sonochem., 51, 214 (2019)
Chang HQ, Li T, Liu BC, Vidic RD, Elimelech M, Crittenden JC, Desalination, 455, 34 (2019)
Munirasu S, Abu Haija M, Banat F, Process Saf. Environ. Protect., 100, 183 (2016)
Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Da’na DA, J. Water Process Eng., 28, 222 (2019)
Ji G, Sun T, Zhou Q, Sui X, Chang S, Li P, Ecol. Eng., 18, 459 (2002)
Jimenez S, Mico M, Arnaldos M, Medina F, Contreras S, Chemosphere, 192, 186 (2018)
Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ, J. Hazard. Mater., 170(2-3), 530 (2009)
Wang M, Wang M, Chen D, Gong Q, Yao S, Jiang W, Chen Y, J. Environ. Chem. Eng., 7, 102878 (2019)
Fakharian H, Ganji H, Naderifar A, J. Taiwan Inst. Chem. Eng., 72, 157 (2017)
Jain P, Sharma M, Dureja P, Sarma PM, Lal B, Chemosphere, 166, 96 (2017)
Jia B, J. Taiwan Inst. Chem. Eng., 104, 82 (2019)
Zheng J, Chen B, Thanyamanta W, Hawboldt K, Zhang B, Liu B, Mar. Pollut. Bull., 104, 7 (2016)
Wang C, Wang Z, Wei X, Li X, J. Water Process Eng., 32, 100972 (2019)
Mohanakrishna G, Al-Raoush RI, Abu-Reesh IM, Aljaml K, Sci. Total Environ., 665, 820 (2019)
Li H, Watson J, Zhang Y, Lu H, Liu Z, Bioresour. Technol., 298, 122421 (2019)
Igunnu ET, Chen GZ, Int. J. Low-Carbon Tech., 9, 157 (2014)
Jeong CM, Choi JDR, Ahn Y, Chang HN, Korean J. Chem. Eng., 25(3), 535 (2008)
Trinh NT, Park JH, Kim SS, Lee JC, Lee BY, Kim BW, Korean J. Chem. Eng., 27(2), 546 (2010)
Ghasemi M, Daud WRW, Ismail AF, Jafari Y, Ismail M, Mayahi A, Othman J, Desalination, 235, 1 (2013)
Sedighi M, Aljlil SA, Alsubei MD, Ghasemi M, Mohammadi M, Alex. Eng. J., 57, 4243 (2018)
Najafgholi Z, Rahimnejad M, Korean J. Chem. Eng., 33(1), 154 (2016)
Leong JX, Daud WRW, Ghasemi M, Liew KB, Ismail M, Renew. Sust. Energ. Rev., 28, 575 (2013)
Ghasemi M, Shahgaldi S, Ismail M, Kim BH, Yaakob Z, Daud WRW, Int. J. Hydrog. Energy, 36(21), 13746 (2011)
Zhang LM, Sui XL, Zhao L, Zhang JJ, Gu DM, Wnag ZB, Carbon, 108, 561 (2016)
Ghasemi M, Daud WRW, Alam J, Jafari Y, Sedighi M, Aljlil SA, Ilbeygi H, Int. J. Hydrog. Energy, 41(8), 4862 (2016)
Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Daud WRW, Hassan SHA, Heng LY, Alam J, Oh SE, Appl. Energy, 102, 1050 (2013)
Hisham S, Khan FA, Aljlil SA, Ghasemi M, SN Appl. Sci., 1, 646 (2019)
Ilbeygi H, Mayahi A, Ismail A, Nasef M, Jaafar J, Ghasemi M, Matsuura T, Zaidi S, J. Taiwan Inst. Chem. Eng., 45, 2265 (2014)
Montgomery DC, Design and analysis of experiments, Wiley, United States (2017).
Sedighi M, Mohammadi M, Sedighi M, Ghasemi M, Energy Fuels, 32(7), 7412 (2018)
Mohammadi M, Sedighi M, Alimohammadi V, Int. J. Nano Dimens., 10, 195 (2019)
Nouri M, Sedighi M, Ghasemi M, Mohammadi M, Korean J. Chem. Eng., 30(9), 1700 (2013)
Mohammadi M, Dadvar M, Dabir B, J. Mol. Liq., 238, 326 (2017)
Momtazan F, Vafaei A, Ghaedi M, Ghaedi AM, Emadzadeh D, Lau WJ, Baneshi MM, Korean J. Chem. Eng., 35(5), 1108 (2018)
Ghasemi M, Nassef AM, Al.Dhaifallah M, Rezk H, Int. J. Energy Res., 1, 1 (2020)
Ghasemi M, Daud WRW, Hassan SHA, Jafary T, Rahimnejad M, Ahmad A, Yazdi MH, Int. J. Hydrog. Energy, 41(8), 4872 (2016)
Mohan Y, Das D, Int. J. Hydrog. Energy, 34(17), 7542 (2009)
Hou B, Sun JA, Hu YY, Bioresour. Technol., 102(6), 4433 (2011)
Garino N, Sacco A, Castellino M, Munoz-Tabares JA, et al., ACS Appl. Mater. Interfaces, 8, 4633 (2016)
Mehdinia A, Ziaei E, Jabbari A, Electrochim. Acta, 130, 512 (2014)
Kongkanand A, Mathias MF, J. Phys. Chem. Lett., 7, 1127 (2016)
Ahn HS, Tilley TD, Adv. Funct. Mater., 23(2), 227 (2013)
An J, Jeon H, Lee J, Chang IS, Environ. Sci. Technol., 45, 5441 (2011)
Erable B, Feron D, Bergel A, ChemSusChem, 5, 975 (2012)
Chen T, Dai L, Mater. Today, 16, 272 (2013)
Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K, Bull. Chem. Soc. Jpn., 90, 627 (2017)
Baldizzone C, Mezzavilla S, Carvalho HW, Meier JC, et al., Angew. Chem.-Int. Edit., 53, 14250 (2014)
Sedighi M, Mohammadi M, J. CO2 Util., 35, 236 (2020)
Gummalla M, Ball SC, Condit DA, Rasouli S, Yu K, Ferreira PJ, Myers DJ, Yang Z, Catalysts, 5, 926 (2015)
Yano H, Watanabe M, Iiyama A, Uchida H, Nano Energy, 29, 323 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로