ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 1, 2020
Accepted August 21, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Kinetic study of activation and deactivation of adsorbed cellulase during enzymatic conversion of alkaline peroxide oxidation-pretreated corn cob to sugar

College of Engineering, Department of Chemical Engineering, Covenant University, Canaan land, Ota, Nigeria 1Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa 2Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
Korean Journal of Chemical Engineering, January 2021, 38(1), 81-89(9), 10.1007/s11814-020-0667-2
downloadDownload PDF

Abstract

Corn cob lignocellulosic biomass is one of the useful precursors for the alternative production of fuels and chemicals. Understanding the kinetics of enzymatic conversion of corn cob through kinetic models could provide indepth knowledge and increase the predictive ability for process design and optimization. In this study, models based on the semi-mechanistic rate equations, first-order decay exponential function of time for adsorbed enzymes, structural and diffusion coefficient for adsorption were used to estimate kinetic parameters for the enzymatic conversion of alkaline peroxide oxidation (APO) pretreated corn cob to sugar. Fitting a first-order inactivation model of adsorbed cellulases to account for experimental hydrolysis data, the apparent hydrolysis rate constant (k2=29.51 min-1), the inactivation rate constant (k3=0.269min-1), and reactivation rate constant (k4=0.0048min-1) were estimated. Regressed values of apparent maximum rate, Vmax, app, for adsorbed enzymes reduced appreciably with time to more than 98% at 96 h. The diffusion limit model showed that the diffusion resistance increased with increasing enzyme concentrations.

References

Yew GY, Lee SY, Show PL, Tao Y, Law CL, Nguyen TTC, Chang JS, Bioresour. Technol. Rep., 7, 100227 (2019)
Liu Y, Han W, Xu X, Chen L, Tang J, Hou P, Biochem. Eng. J., 156, 107528 (2020)
Takkellapati S, Li T, Gonzalez MA, Clean Technol. Environ. Policy, 20, 1615 (2018)
Dikshit PK, Jun HB, Kim BS, J. Chem. Eng., 37, 387 (2020)
Liu S, Wang Q, Cellulose Chem. Technol., 50, 803 (2016)
Adeleye AT, Louis H, Akakuru OU, Joseph I, Enudi OC, Michael DP, AIMS Energy, 7, 165 (2019)
Coelho MMH, Morais NWS, Pereira EL, Leitao RC, dos Santos AB, Biochem. Eng. J., 156, 107502 (2020)
Adeogun AI, Agboola BE, Idowu MA, Shittu TA, J. Bioresour. Bioprod., 4, 149 (2019)
Ayeni AO, Daramola MO, J. Environ. Chem. Eng., 5, 1771 (2017)
Ye ZL, Berson RE, Bioresour. Technol., 102(24), 11194 (2011)
Makarova EI, Budaeva VV, Kukhlenko AA, Orlov SE, 3 Biotech, 7, 317 (2017)
Carrillo F, Lis MJ, Colom X, Lopez-Mesas M, Valldeperas J, Process Biochem., 40(10), 3360 (2005)
Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q, Bioresour. Technol., 306, 123163 (2020)
Jamil NM, WIT Trans. Ecol. Environ., 186, 499 (2014)
Carvalho ML, Sousa R, Rodriguez-Zuniga UF, Suarez CAG, Rodrigues DS, Giordano RC, Giordano RLC, Braz. J. Chem. Eng., 30, 437 (2013)
Ghadge RS, Patwardhan AW, Sawant SB, Joshi JB, Chem. Eng. Sci., 60(4), 1067 (2005)
Converse AO, Matsuno R, Tanaka M, Taniguchi M, Biotechnol. Bioeng., 32, 38 (1988)
Zhang Y, Xu JL, Xu HJ, Yuan ZH, Guo Y, Bioresour. Technol., 101(21), 8261 (2010)
Huang C, Lin W, Lai C, Li X, Jin Y, Yong Q, Bioresour. Technol., 285, 121355 (2019)
Jalak J, Valjamae P, Biotechnol. Bioeng., 106(6), 871 (2010)
Peri S, Karra S, Lee YY, Karim MN, Biotechnol. Prog., 23(3), 626 (2007)
Gan Q, Allen SJ, Taylor G, Process Biochem., 38(7), 1003 (2003)
Asenjo JA, Biotechnol. Bioeng., 25, 3185 (1983)
Hong J, Ye XH, Zhang YHP, Langmuir, 23(25), 12535 (2007)
Briggs GE, Haldane JB, Biochem. J., 19, 338 (1925)
Chrastil J, Wilson JT, Int. J. Biochem., 14, 1 (1982)
Chrastil J, Int. J. Biochem., 20, 683 (1988)
Gould JM, Biotechnol. Bioeng., 26, 46 (1984)
Ayeni AO, Omoleye JA, Mudliar S, Hymore FK, Pandey RA, Korean J. Chem. Eng., 31(7), 1180 (2014)
Miller GL, Anal. Chem., 31, 426 (1959)
Ayeni AO, Omoleye JA, Hymore FK, Pandey RA, Braz. J. Chem. Eng., 33, 33 (2016)
Yoo CG, Lee CW, Kim TH, Biomass Bioenergy, 35, 4901 (2011)
Lemos MA, Teixeira JA, Domingues MRM, Mota M, Gama FM, Microb. Technol., 32, 35 (2003)
Lloyd D, J. Mol. Evolut., 45, 370 (1997)
Bian J, Peng F, Peng XP, Peng P, Xu F, Sun RC, BioResources, 7, 4626 (2012)
Berg JM, Tymoczko JL, Stryer L, Biochemistry, W. H. Freeman Publications, New York (2006).
Crank J, The mathematics of diffusion, Clarendon Press, Oxford (1975).
Ayeni AO, Daramola MO, Awoyomi A, Elehinafe FB, Ogunbiyi A, Sekoai PT, Folayan JA, Cogent Eng., 5, 150966 (2018)
Spiridon I, Teaca C, Bodirlau R, BioResources, 6, 400 (2011)
Gratzl JS, Papier, 46, 1 (1992)
Valjamae P, Sild V, Pettersson G, Johansson G, Eur. J. Biochem., 253, 469 (1998)
Marasovi M, Marasovi T, Milos M, J. Chem., 6560983, 1 (2017)
Wilkinson GN, Biochem. J., 80, 324 (1961)
Holtzapple MT, Caram HS, Humphrey AE, Biotechnol. Bioeng., 26, 775 (1984)
Matsuno R, Taniguchi M, Tanaka M, Kamikubo T, Enz. Eng., 7, 158 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로