ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 16, 2021
Accepted May 16, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Slow-rate devolatilization of municipal sewage sludge and texture of residual solids

1Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135 165 02 Praha 6, Czech Republic 2ENET Centre, Technical University of Ostrava, 17. listopadu 15 708 33 Ostrava, Czech Republic 3Department of Power Engineering, University of Chemistry and Technology Prague, Technicka 5 166 28 Praha 6, Czech Republic
hartman@icpf.cas.cz
Korean Journal of Chemical Engineering, October 2021, 38(10), 2072-2081(10), 10.1007/s11814-021-0847-8
downloadDownload PDF

Abstract

Ash-rich sludge samples originating in four large plants were analyzed and employed to explore primarily the kinetics and the chemistry of devolatilization. A gravimetric, slowly increasing-temperature method was used in the range 298-1,123 K in a milieu of nitrogen. As an intricate combination of numerous (bio)organic and inorganic compounds, the dry sludge commences devolatilizing at approximately 418 K. The bulk of organic matter is released up to 823 K, at the rate becoming very slow thereafter. Basic constituents of the product gas are CO2, CO, H2, and CH4 with undesired nitrogenous, sulfurous, and chloro compounds. The residual solids contain significant amounts of organic matter/carbon and, on account of their favorable textural characteristics, they can be viewed as promising sorbents or catalysts. Kinetic triad was inferred from the experimental data: the model is well-capable of simulating the process of devolatilization and can be used for design considerations. An explicit equation, based upon a tractable approximation to the temperature integral (for [E/(RT)]≥0.1), has been verified and proposed for predicting the maximum reaction rate temperature. Remarkable differences in thermal behavior were explored in detail between the sludge and the alkali bicarbonates.

References

Zenz D, in Municipal sewage sludge management: A reference text on processing, utilization and disposal, Vol. 4, 2nd Ed., Technomic, Lancaster (1998).
Werther J, Ogada T, Prog. Energ. Combust. Sci., 25, 55 (1999)
Hartman M, Svoboda K, Pohorely M, Trnka O, Ind. Eng. Chem. Res., 44(10), 3432 (2005)
Hartman M, Pohorely M, Trnka O, Powder Technol., 178(3), 166 (2007)
Magdziarz A, Werle S, Waste Manage., 34, 174 (2014)
Syed-Hassan SSA, Wang Y, Hu S, Su S, Xiang J, Renew. Sust. Energ. Rev., 80, 888 (2017)
Svoboda K, Pohorely M, Hartman M, Martinec J, Fuel Process. Technol., 90(5), 629 (2009)
Petersen I, Werther J, Chem. Eng. Process., 44(7), 717 (2005)
Liu G, Wright MM, Zhao Q, Brown RC, ACS Sustain. Chem. Eng., 4, 1819 (2016)
Abrego J, Sanchez JL, Arauzo J, Fonts I, Gil-Lalaguna N, Atienza-Martinez M, Energy Fuels, 27(2), 1026 (2013)
Fonts I, Gea G, Azuara M, Abrego J, Arauzo J, Renew. Sust. Energ. Rev., 16, 2781 (2012)
Scott SA, Davidson JF, Dennis JS, Hayhurst AN, Chem. Eng. Sci., 62(1-2), 584 (2007)
Stammbach MR, Kraaz B, Hagenbucher R, Richarz W, Energy Fuels, 3, 255 (1989)
Kistler RC, Widmer F, Brunner PH, Environ. Sci. Technol., 21, 704 (1987)
Piskorz J, Scott DS, Westerberg IB, Ind. Eng. Chem. Process Des. Dev., 25, 265 (1986)
Bandosz TJ, Block K, Appl. Catal. B: Environ., 67(1-2), 77 (2006)
Pyle DL, Zaror CA, Chem. Eng. Sci., 39, 147 (1984)
Poudel J, Ohm TI, Lee SH, Oh SC, Waste Manage., 40, 112 (2015)
Atienza-Martinez M, Mastral JF, Abrego J, Ceamanos J, Gea G, Energy Fuels, 29(1), 160 (2015)
Atienza-Martinez M, Fonts I, Abrego J, Ceamanos J, Gea G, Chem. Eng. J., 222, 534 (2013)
Dhungana A, Dutta A, Basu P, Can. J. Chem. Eng., 90(1), 186 (2012)
Hartman M, Trnka O, AIChE J., 54(7), 1761 (2008)
Scott SA, Dennis JS, Davidson JF, Hayhurst AN, Chem. Eng. Sci., 61(8), 2339 (2006)
Urban DL, Antal MJ, Fuel, 61, 799 (1982)
Conesa JA, Marcilla A, Prats D, Rodriguez-Pastor M, Waste Manage. Res., 15, 293 (1997)
Dumpelmann R, Richarz W, Stammbach MR, Can. J. Chem. Eng., 69, 953 (1991)
Biagini E, Lippi F, Petarca L, Tognotti L, Fuel, 81(8), 1041 (2002)
Scott SA, Dennis JS, Davidson JF, Hayhurst AN, Fuel, 85(9), 1248 (2006)
Coats AW, Redfern JP, Nature, 201, 68 (1964)
Schlomilch O, Compendium der hoheren analysis, 2.-4. Aufl., 2 Bde., Vieweg & Sohn, Braunschweig (1874).
Doyle CD, Nature, 207, 290 (1965)
Lee TV, Beck SR, AIChE J., 30, 517 (1984)
Cai JM, Yao FS, Yi WM, He F, AIChE J., 52(4), 1554 (2006)
Senum GI, Yang RT, J. Therm. Anal., 11, 445 (1977)
Vallet P, Tables numeriques permettant l´integration des constantes de vitess par rapport a la temperature, Gauthier-Villars, Paris (1961).
Hartman M, Svoboda K, Cech B, Pohorely M, Syc M, Ind. Eng. Chem. Res., 58(8), 2868 (2019)
Hartman M, Svoboda K, Pohorely M, Syc M, Ind. Eng. Chem. Res., 52(31), 10619 (2013)
Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163 (2010)
Barin I, Platzki G, Thermochemical data of pure substances, 3rd Ed., VCH, Weinheim (1995).
Hartman M, Martinovsky A, Chem. Eng. Commun., 111, 149 (1992)
Remy H, Lehrbuch der anorganischen chemie, Band I, 12th Ed., Geest & Portig, Leipzig (1965).
Johnston J, J. Am. Chem. Soc., 32, 938 (1910)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로