Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 23, 2021
Accepted May 22, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Application of L-glutamate oxidase from Streptomyces sp. X119-6 with catalase (KatE) to whole-cell systems for glutaric acid production in Escherichia coli
Sion Ham
Yeong-Hoon Han
Sang Hyun Kim
Min Ju Suh
Jang Yeon Cho
Hong-Ju Lee
See-Hyoung Park1
Kyungmoon Park1
Jung-Oh Ahn2
Jeong Chan Joo3
Shashi Kant Bhatia†
ung-Hun Yang†
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea 1Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Korea 2Biotechnology Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Cheongju-si 28116, Korea 3Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi 14662, Korea
shashibiotechhpu@gmail.com
Korean Journal of Chemical Engineering, October 2021, 38(10), 2106-2112(7), 10.1007/s11814-021-0855-8
Download PDF
Abstract
Whole-cell systems offer many benefits for biochemical production, such as relatively easy enzyme control and higher tolerance toward harsh environments, than purified enzymes. These systems can be applied to many bioconversion reactions, but they sometimes require cofactor regeneration units to support reactions at high substrate concentrations. Here, we examined L-glutamate oxidase (GOX) from Streptomyces sp. X119-6, which produces α- ketoglutarate (α-KG) from L-glutamate, and catalase (KatE) from Escherichia coli, which removes hydrogen peroxide generated by GOX. After optimizing the expression vector, pH, strains, culture conditions, and isopropyl β-D-1-thiogalactopyranoside concentration, we compared their efficiency to that of a previously reported GOX from Streptomyces mobaraensis. Our results indicated that GOX from Streptomyces sp. X119-6 and KatE increased α-KG production by 2.76-fold. This GOX required high levels of α-KG as an amino donor to convert 5-aminovaleric acid to glutaric acid. Performing the reaction at pH 8 enabled us to avoid the exogenous addition of catalase, but severe substrate inhibition was observed, resulting in the production of 287mM glutaric acid. This α-KG regeneration system has potential for improving production in various aminotransferase systems.
References
Arima J, Sasaki C, Sakaguchi C, Mizuno H, Tamura T, Kashima A, Kusakabe H, Sugio S, Inagaki K, FEBS J., 276, 3894 (2009)
Niu P, Dong X, Wang Y, Liu L, J. Biotechnol., 179, 56 (2014)
Zhang X, Xu N, Li J, Ma Z, Wei L, Liu Q, Liu J, Enzyme Microb. Technol., 136, 109530 (2020)
Soldatkina O, Soldatkin O, Kasap BO, Kucherenko DY, Kucherenko I, Kurc BA, Dzyadevych S, Nanoscale Res. Lett., 12, 1 (2017)
Wagenmakers AJ, Skeletal Muscle Metabolism in Exercise and Diabetes, 441, 307 (1998).
Kumari A, Sweet biochemistry: Remembering structures, cycles, and pathways by mnemonics, Academic Press, Rohtak, Haryana, India (2017).
Srivastava HS, Singh RP, Phytochemistry, 26, 597 (1987)
Liu QD, Ma XQ, Cheng HJ, Xu N, Liu J, Ma YH, Biotechnol. Lett., 39(6), 913 (2017)
Wu J, Fan XC, Liu J, Luo QL, Xu JS, Chen XL, Appl. Microbiol. Biotechnol., 102(11), 4755 (2018)
Yang SY, Choi TR, Jung HR, Park YL, Han YH, Song HS, Gurav R, Bhatia SK, Park K, Ahn JO, Enzyme Microb. Technol., 133, 109446 (2020)
Bohmer A, Muller A, Passarge M, Liebs P, Honeck H, Muller HG, Eur. J. Biochem., 182, 327 (1989)
Wang LJ, Peng RH, Tian YS, Liu M, Yao QH, Biotechnol. Lett., 39(4), 523 (2017)
Wachiratianchai S, Bhumiratana A, Udomsopagit S, Electronic J. Biotechnol., 7, 09 (2004)
Hong YG, Moon YM, Choi TR, Jung HR, Yang SY, et al., Biotechnol. Bioengineering, 116, 333 (2019)
Yang SY, Choi TR, Jung HR, Park YL, Han YH, Song HS, Bhatia SK, Park K, Ahn JO, Jeon WY, Kim JS, Yang YH, Enzyme Microb. Technol., 128, 72 (2019)
Bhatia SK, Bhatia RK, Yang YH, Rev. Environ. Sci. Bio/Technol., 15, 639 (2016).
Hong YG, Moon YM, Hong JW, No SY, Choi TR, Jung HR, Yang SY, Bhatia SK, Ahn JO, Park KM, Yang YH, Enzyme Microb. Technol., 118, 57 (2018)
Moon YM, Gurav R, Kim J, Hong YG, Bhatia SK, et al., Biotechnol. Bioprocess Eng., 23, 442 (2018)
Choi TR, Jeon JM, Bhatia SK, Gurav R, Han YH, et al., iotechnol. Bioprocess Eng., 25, 279 (2020)
Park JY, Park YL, Choi TR, Kim HJ, Song HS, Han YH, Lee SM, Park SL, Lee HS, Bhatia SK, Gurav R, Yang YH, Korean J. Chem. Eng., 37(12), 2225 (2020)
Kim J, Seo HM, Bhatia SK, Song HS, Kim JH, Jeon JM, Choi KY, Kim W, Yoon JJ, Kim YG, Sci. Rep., 7, 1 (2017)
Moon YM, Yang SY, Chol TR, Jung HR, Song HS, Han YH, Park HY, Bhatia SK, Gurav R, Park K, Kim JS, Yang YH, Enzyme Microb. Technol., 127, 58 (2019)
Kim JH, Kim J, Kim HJ, Sathiyanarayanan G, Bhatia SK, Song HS, Choi YK, Kim YG, Park K, Yang YH, Enzyme Microb. Technol., 104, 9 (2017)
Niu P, Dong X, Wang Y, Liu L, J. Biotechnol., 179, 56 (2014)
Zhang X, Xu N, Li J, Ma Z, Wei L, Liu Q, Liu J, Enzyme Microb. Technol., 136, 109530 (2020)
Soldatkina O, Soldatkin O, Kasap BO, Kucherenko DY, Kucherenko I, Kurc BA, Dzyadevych S, Nanoscale Res. Lett., 12, 1 (2017)
Wagenmakers AJ, Skeletal Muscle Metabolism in Exercise and Diabetes, 441, 307 (1998).
Kumari A, Sweet biochemistry: Remembering structures, cycles, and pathways by mnemonics, Academic Press, Rohtak, Haryana, India (2017).
Srivastava HS, Singh RP, Phytochemistry, 26, 597 (1987)
Liu QD, Ma XQ, Cheng HJ, Xu N, Liu J, Ma YH, Biotechnol. Lett., 39(6), 913 (2017)
Wu J, Fan XC, Liu J, Luo QL, Xu JS, Chen XL, Appl. Microbiol. Biotechnol., 102(11), 4755 (2018)
Yang SY, Choi TR, Jung HR, Park YL, Han YH, Song HS, Gurav R, Bhatia SK, Park K, Ahn JO, Enzyme Microb. Technol., 133, 109446 (2020)
Bohmer A, Muller A, Passarge M, Liebs P, Honeck H, Muller HG, Eur. J. Biochem., 182, 327 (1989)
Wang LJ, Peng RH, Tian YS, Liu M, Yao QH, Biotechnol. Lett., 39(4), 523 (2017)
Wachiratianchai S, Bhumiratana A, Udomsopagit S, Electronic J. Biotechnol., 7, 09 (2004)
Hong YG, Moon YM, Choi TR, Jung HR, Yang SY, et al., Biotechnol. Bioengineering, 116, 333 (2019)
Yang SY, Choi TR, Jung HR, Park YL, Han YH, Song HS, Bhatia SK, Park K, Ahn JO, Jeon WY, Kim JS, Yang YH, Enzyme Microb. Technol., 128, 72 (2019)
Bhatia SK, Bhatia RK, Yang YH, Rev. Environ. Sci. Bio/Technol., 15, 639 (2016).
Hong YG, Moon YM, Hong JW, No SY, Choi TR, Jung HR, Yang SY, Bhatia SK, Ahn JO, Park KM, Yang YH, Enzyme Microb. Technol., 118, 57 (2018)
Moon YM, Gurav R, Kim J, Hong YG, Bhatia SK, et al., Biotechnol. Bioprocess Eng., 23, 442 (2018)
Choi TR, Jeon JM, Bhatia SK, Gurav R, Han YH, et al., iotechnol. Bioprocess Eng., 25, 279 (2020)
Park JY, Park YL, Choi TR, Kim HJ, Song HS, Han YH, Lee SM, Park SL, Lee HS, Bhatia SK, Gurav R, Yang YH, Korean J. Chem. Eng., 37(12), 2225 (2020)
Kim J, Seo HM, Bhatia SK, Song HS, Kim JH, Jeon JM, Choi KY, Kim W, Yoon JJ, Kim YG, Sci. Rep., 7, 1 (2017)
Moon YM, Yang SY, Chol TR, Jung HR, Song HS, Han YH, Park HY, Bhatia SK, Gurav R, Park K, Kim JS, Yang YH, Enzyme Microb. Technol., 127, 58 (2019)
Kim JH, Kim J, Kim HJ, Sathiyanarayanan G, Bhatia SK, Song HS, Choi YK, Kim YG, Park K, Yang YH, Enzyme Microb. Technol., 104, 9 (2017)