ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 14, 2021
Accepted May 18, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Oxygen-vacancy-rich spinel CoFe2O4 nanocrystals anchored on cage-like carbon for high-performance oxygen electrocatalysis

Department of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China 1Department of Polymer Materials, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China 2Department of Chemistry, Inha University, Nam-gu, Incheon 22212, Korea
jinfanlong@163.com
Korean Journal of Chemical Engineering, October 2021, 38(10), 2134-2140(7), 10.1007/s11814-021-0849-6
downloadDownload PDF

Abstract

We report spinel-type CoFe2O4 nanocrystals (NCs) synthesized through facile hydrothermal growth and their attachment on a cage-like carbon (CC) for efficient and durable oxygen evolution/reduction reaction (OER/ORR) performance. As a catalyst, the so-constructed CoFe2O4 NCs show significantly higher OER performance than bare CoFe2O4 and CC, leading to an overpotential of 1.59 V for the OER at a current density of 10mA/cm. Furthermore, CoFe2O4 NCs on CC electrodes also exhibit good ORR performance, which is comparable to Pt/C, significantly higher than that of bare carbon fiber paper, and acts as a bifunctional electrocatalyst. The CoFe2O4 NCs anchored on the CC electrodes exhibit remarkably long-term stability, which is evaluated by continuous cycling (over 5,000 cycles), without any morphological change, but preserving all the materials within the electrode. The results indicate that the CoFe2O4 NCs have a promising potential for efficient, cost-effective, and durable oxygen electrocatalysis at large scales using earth-abundant materials and low-cost fabrication processes.

References

Ma TY, Wu SY, Wang F, ACS Appl. Mater. Interfaces, 50, 56086 (2020)
Zou KY, Li N, Chen YZ, Sun JJ, ACS Appl. Nano Mater., 6, 5732 (2020)
Liu QY, Yi XY, Han X, Fire Technol., 56, 2509 (2020)
Tammam RH, Fekry AM, Saleh MM, Korean J. Chem. Eng., 11, 1932 (2019)
Zhan Y, Xu CH, Lee JY, J. Mater. Chem. A, 2, 16217 (2014)
Muthurasu A, Dahal B, Kim HY, ACS Appl. Mater. Interfaces, 37, 41704 (2020)
Davari E, Ivey DG, Sustain. Energy Fuels, 2, 39 (2018)
Shinde SS, Lee CH, Lee JH, ACS Nano, 1, 347 (2017)
Yang SX, Yu YH, Dou ML, Angew. Chem.-Int. Edit., 41, 14866 (2019)
Sharma L, Gond R, Barpanda P, ACS Catal., 1, 43 (2020)
Ren JT, Yuan ZY, ACS Sustain. Chem. Eng., 11, 11121 (2019)
Lee DU, Xu P, Chen ZW, J. Mater. Chem. A, 4, 7107 (2016)
Fritz KE, Yan YC, Suntivich J, Nano Res., 12, 2307 (2019)
Wang DD, Chen X, Yang WS, Nanoscale, 5, 5312 (2013)
Tammam RH, Fekry AM, Saleh MM, Korean J. Chem. Eng., 36(11), 1932 (2019)
Takimoto D, Fukuda K, Sugimoto W, Electrocatalysis, 8, 144 (2017)
He QM, Kun R, Wen ZY, ACS Appl. Mater. Interfaces, 9, 36927 (2017)
Bian WY, Yang ZR, Strasser P, Yang RZ, J. Power Sources, 250, 196 (2014)
Yin J, Shen L, Xi PX, J. Mater. Res., 33, 590 (2018)
Wang CP, Su H, Zhang JM, ACS Appl. Mater. Interfaces, 10, 28679 (2018)
Wu HB, Lou XW, Sci. Adv., 3, 9252 (2017)
Fan HS, Zhang YF, Xu J, Nano Energy, 33, 168 (2017)
Kim JG, Noh Y, Lee S, Nanoscale, 9, 5119 (2017)
Alireza K, Serdar Y, Prabhakar RB, ACS Appl. Mater. Interfaces, 7, 17851 (2015)
Wu ZX, Wu HB, Jin W, ACS Sustain. Chem. Eng., 24, 9226 (2020)
Liu CJ, Zhang ZC, Guo GJ, RSC Adv., 6, 106443 (2016)
Chee KN, Ren WT, Wu J, Chem. Sci., 10, 1549 (2019)
Bing YF, Zeng Y, Zheng WT, Nanoscale, 7, 3276 (2015)
Nazir A, Hussein AY, Francis V, Chem. Soc. Rev., 44, 9 (2015)
Martin R, Martin GN, Nico B, Chem. Soc. Rev., 45, 6213 (2016)
Marco B, Raul PS, Maciej, Mol. Syst. Des. Eng., 4, 912 (2019)
Wang HG, Liu DP, Duan Q, Mater. Lett., 172, 64 (2016)
Xie K, Qin XT, Wang XZ, Wang YN, Tao HS, Wu Q, Yang LJ, Hu Z, Adv. Mater., 24(3), 347 (2012)
Kargar A, Yavuz S, Kim TK, ACS Appl. Mater. Interfaces, 32, 17851 (2015)
He QM, Rui K, Chen CH, ACS Appl. Mater. Interfaces, 42, 36927 (2017)
Praveena K, Bououdina M, J. Electron. Mater., 49, 6187 (2020)
Abbott LJ, Colina CM, J. Chem. Eng. Data, 10, 3177 (2014)
Safran S, Bulut F, Nefrow ARA, J. Mater. Sci., 31, 20578 (2020)
Verma B, Balomajumder C, Korean J. Chem. Eng., 37(7), 1157 (2020)
Georgioua Y, Papadas IT, Armatas GS, Environ. Sci.: Nano, 6, 1156 (2019)
Ding Y, Zhao J, Yang FC, ACS Appl. Energy Mater., 2, 1026 (2019)
Wang X, Zhuang LZ, Yuan P, Chem. Res. Chinese U., 36, 479 (2020)
Saha M, Ghosh S, Paul S, Dalal B, De SK, ChemistrySelect, 3, 6654 (2018)
Chen T, Meng J, Lin Q, Wei X, Li J, Zhang Z, J. Alloy. Compd., 780, 798 (2019)
Li S, Wang M, Li C, Liu J, Xu M, Liu J, Zhang J, Sci. China Mater., 61, 1085 (2018)
Lavorato G, Lima E, Winkler E, J. Phys. Chem. C, 5, 3047 (2018)
Guo D, Wang J, Zhang L, Chen X, Wan Z, Xi B, Small, 2002432 (2020).
Zhang SL, Guan BY, Lu XF, Xi S, Du Y, Lou XW, Adv. Mater., 32, 200223 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로