ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 15, 2021
Accepted July 20, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhanced stability of PdPtAu alloy catalyst for formic acid oxidation

1School of Food Biotechnology and Chemical Engineering, Hankyong National University, Anseong 17579, Korea 2Research Center of Chemical Technology, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Korea 3Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
-
Korean Journal of Chemical Engineering, November 2021, 38(11), 2229-2234(6), 10.1007/s11814-021-0909-y
downloadDownload PDF

Abstract

n this study, the ternary catalyst, PdPtAu, was synthesized for the electrochemical formic acid oxidation reaction. The catalyst was prepared through the co-precipitation using NaBH4 as a reducing agent. The status of catalyst formation and the extent of average particle size were known by X-ray diffraction (XRD) and transmission electron microscopy (TEM). For this work, we accomplished electrochemical analyses for the PdPtAu, Pd, Pt, and Au, which defines each activity for formic acid oxidation. In durability tests, half cell and single cell tests show even better stability than the Pd and Au catalysts. Stripping tests were carried out after durability tests. Based on results, the ternary PdPtAu catalyst is less deactivated than the Pd, while the catalyst shows higher activity than the Pt. The PdPtAu catalyst represents high resistance for poisoning as compared to the Pd. We demonstrate the stability of the PdPtAu catalyst in the 3-electrode electrochemical system and single cell tests. After 2 h-operation, the deactivation degree of PdPtAu shows 27% loss of the initial current density, while Pd and Pt catalysts lost 39% and 57% of them, respectively.

References

Ha S, Dunbar Z, Masel RI, J. Power Sources, 158(1), 129 (2006)
Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28 (2005)
Ha S, Larsen R, Zhu Y, Masel RI, Fuel Cells, 4, 337 (2004)
Jung WS, Han JH, Ha S, J. Power Sources, 173(1), 53 (2007)
Jung WS, Han J, Yoon SP, Nam SW, Lim TH, Hong SA, J. Power Sources, 196(10), 4573 (2011)
Uhm SH, Jeon HR, Lee JY, J. Electrochem. Sci. Technol., 1, 10 (2010)
Sui L, An W, Rhee CK, Hur SH, J. Electrochem. Sci. Technol., 11, 84 (2020)
Han SD, Choi JH, Noh SY, Park K, Yoon SK, Rhee YW, Korean J. Chem. Eng., 26(4), 1040 (2009)
Wang Y, Xiong Z, Xia Y, RSC Adv., 7, 40462 (2017)
Shi HX, Liao F, Zhu WX, Shao CR, Shao MW, Int. J. Hydrog. Energy, 45(32), 16071 (2020)
Lee SY, Jung N, Cho J, Park HY, Ryu J, Jang I, Kim HJ, Cho E, Park YH, Ham HC, Jang JH, Yoo SJ, ACS Catal., 4, 2402 (2014)
Liu D, Xie M, Wang C, Liao L, Qiu L, Ma J, Huang H, Long R, Jiang J, Xiong Y, Nano Res., 9, 1590 (2016)
Lu Y, Chen W, ACS Catal., 2, 84 (2012)
Liao H, Zhu J, Hou Y, Nanoscale, 6, 1049 (2014)
Hong LY, Dong QZ, Qin Q, Li HZ, Xie J, Yu G, Chen H, Int. J. Hydrog. Energy, 44(36), 19900 (2019)
Zhang LY, Gong YY, Wu DB, Li Z, Li Q, Zheng LW, Chen W, Appl. Surf. Sci., 469, 305 (2019)
Douk AS, Saravani H, Noroozifar M, J. Alloy. Compd., 739, 882 (2018)
Juarez-Marmolejo L, Perez-Rodriguez S, de Oca-Yemha MGM, Palomar-Pardave M, Romero-Romo M, Ezeta-Mejia A, Morales-Gil P, Martinez-Huerta MV, Lazaro MJ, Int. J. Hydrog. Energy, 44(3), 1640 (2019)
Jin YX, Zhao J, Li F, Jia WP, Liang DX, Chen H, Li RR, Hu JJ, Ni JM, Wu TQ, Zhong DP, Electrochim. Acta, 220, 83 (2016)
Ding KQ, Liu L, Cao YL, Yan XR, Wei HG, Guo ZH, Int. J. Hydrog. Energy, 39(14), 7326 (2014)
Caglar A, Ulas B, Cogenli MS, Yurtcan AB, Kivrak H, J. Electroanal. Chem., 850, 113402 (2019)
Xu C, Hao Q, Duan H, J. Mater. Chem. A, 2, 8875 (2014)
Li Y, Cao X, Wang L, Wang Y, Xu Q, Li Q, J. Taiwan Inst. Chem. Eng., 76, 109 (2017)
Choi JH, Park KW, Park IS, Kim K, Lee JS, Sung YE, J. Electrochem. Soc., 153(10), A1812 (2006)
Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ, J. Electrochem. Soc., 145(7), 2354 (1998)
Lu GQ, Crown A, Wieckowski A, J. Phys. Chem. B, 103(44), 9700 (1999)
Wasmus S, Tryk DA, Vielstich W, J. Electroanal. Chem., 377(1-2), 205 (1994)
Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, J. Phys. Chem. B, 110(27), 13393 (2006)
Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 44, 1 (1973).
Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 45, 205 (1973).
Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 44, 239 (1973).
Chen YX, Heinen M, Jusys Z, Behm RJ, Angew. Chem.-Int. Edit., 45, 981 (2006)
Jeong KJ, Miesse CA, Choi JH, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Lee TG, J. Power Sources, 168(1), 119 (2007)
Ha H, Yoon S, An K, Kim HK, ACS Catal., 8, 11491 (2018)
Ulas B, Caglar A, Kivrak A, Aktas N, Kivrak H, Ionics, 26, 3109 (2020)
Jung WS, Lee WH, Oh HS, Popov BN, J. Mater. Chem. A, 8, 19833 (2020)
Jung WS, Popov BN, ACS Appl. Mater. Interfaces, 9, 23679 (2017)
Huang J, Hou H, You T, Electrochem. Commun., 11, 1281 (2009)
Jiang K, Zhang HX, Zou S, Cai WB, PCCP, 16, 20360 (2014)
Gu XJ, Lu ZH, Jiang HL, Akita T, Xu Q, J. Am. Chem. Soc., 133(31), 11822 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로