Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 28, 2021
Accepted June 19, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Catalytic pyrolysis of linear low-density polyethylene using recycled coal ash: Kinetic study and environmental evaluation
1Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, P. R. China 2New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, P. R. China 3Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, P. R. China 4Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK 5Municipal Key Laboratory of Clean Energy Conversion Technologies, University of Nottingham Ningbo China, Ningbo 315100, China
ChengHeng.Pang@nottingham.edu.cn
Korean Journal of Chemical Engineering, November 2021, 38(11), 2235-2246(12), 10.1007/s11814-021-0870-9
Download PDF
Abstract
Catalytic pyrolysis offers a sustainable route to convert plastic wastes into fuel. We investigated the catalytic performance of coal ash (fly and bottom ash) at blending ratio of 5wt%, and 15wt% during pyrolysis of linear lowdensity polyethylene (LLDPE). The influence on activation energy and oil was characterized via thermogravimetric analyzer (TGA) and gas chromatography-mass spectrometry (GC-MS). Results have shown that 15 wt% bottom ash exhibited higher catalytic activity. The activation energy estimated by Coats-Redfern method decreased from 458.7 kJㆍmol-1 to 437.8 kJㆍmol-1, while the alicyclic hydrocarbon yield increased from 5.97% to 32.09%. This implies that CaO, which is abundant in bottom ash, could promote the conversion of LLDPE. Furthermore, a cradle-to-factory gate life cycle assessment was performed to investigate three scenarios (non-catalytic pyrolysis, 15 wt% fly ash, and 15 wt% bottom ash) of LLDPE conversion strategies via a normalization and weighting approach. It was found that LLDPE pyrolysis with 15 wt% bottom ash also showed the lowest normalized score of 2.83, implying the lowest environmental impact. This work has demonstrated that the recycling of coal ash, particularly bottom ash, as catalysts for LLDPE pyrolysis is effective.
Keywords
References
Ryberg MW, Laurent A, Hauschild M, a particular focus on marine environment (2018).
Moharir RV, Kumar S, J. Clean Prod., 208, 65 (2019)
Silva ALP, Prata JC, Walker TR, Duarte AC, Ouyang W, Barcelo D, Rocha-Santos T, Chem. Eng. J., 405, 126683 (2021)
Maafa IM, Polymers, 13, 225 (2021)
Park JJ, Park K, Park JW, Kim DC, Korean J. Chem. Eng., 19(4), 658 (2002)
Lopez A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A, Appl. Catal. B: Environ., 104(3-4), 211 (2011)
Stefanidis SD, Karakoulia SA, Kalogiannis KG, Iliopoulou EF, Delimitis A, Yiannoulakis H, Zampetakis T, Lappas AA, Triantafyllidis KS, Appl. Catal. B: Environ., 196, 155 (2016)
Fu Y, Guo YH, Zhang KX, Energy Fuels, 30(3), 2428 (2016)
Franklin HD, Peters WA, Cariello F, Howard JB, Ind. Eng. Chem. Process Des. Dev., 20, 670 (1981)
Huang Z, Qin L, Xu Z, Chen W, Xing F, Han J, J. Energy Inst., 92, 835 (2019)
Woo OS, Ayala N, Broadbelt LJ, Catal. Today, 55, 161 (2000)
Fan LL, Zhang YN, Liu SY, Zhou N, Chen P, Liu YH, Wang YP, Peng P, Cheng YL, Addy M, Lei HW, Ruan R, Energy Conv. Manag., 149, 432 (2017)
Tang Z, et al., Proc of World of Coal Ash Conference (WOCA) (2013).
Galbreath KC, Zygarlicke CJ, Fuel Process. Technol., 65, 289 (2000)
Zhao H, Ezeh CI, Yin S, Xie Z, Pang CH, Zheng C, Gao X, Wu T, Appl. Catal. B: Environ., 263, 117829 (2020)
Zhao H, Yang G, Pang CH, Fan H, Hall P, Kingman S, Wu T, Energy Procedia, 75, 2421 (2015)
Wang SR, Zhang F, Cai QJ, Zhu LJ, Luo ZY, Int. J. Hydrog. Energy, 40(35), 11406 (2015)
Al-Rahbi AS, Williams PT, J. Mater. Cycles Waste Manage., 21, 1224 (2019)
Gao L, Goldfarb JL, J. Anal. Appl. Pyrol., 137, 96 (2019)
Go YW, Yeom SH, Environ. Eng. Res., 24, 324 (2019)
Benedetti M, Cafiero L, De Angelis D, Dell’Era A, Pasquali M, Stendardo S, Tuffi R, Ciprioti SV, Front. Environ. Sci. Eng., 11, 11 (2017)
Rotliwala Y, Parikh P, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34, 1055 (2012).
Rambau KM, Musyoka NM, Manyala N, Ren J, Langmi HW, Mathe MK, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 53, 1115 (2018)
Lester E, Avila C, Pang CH, Williams O, Perkins J, Gaddipatti S, Tucker G, Barraza JM, Trujillo-Uribe MP, Wu T, Fuel, 232, 845 (2018)
Pang CH, Lester E, Wu T, Biomass Bioenerg., 119, 480 (2018)
Daley PJ, Williams O, Pang CH, Wu T, Lester E, Fuel, 251, 779 (2019)
Tang LY, Yan YX, Meng Y, Wang JY, Jiang P, Pang CH, Wu T, Innovative Solutions for Energy Transitions, 158, 1694 (2019).
Ozsin G, Putum AE, Korean J. Chem. Eng., 35(2), 428 (2018)
Lee KH, Oh SC, Korean J. Chem. Eng., 27(1), 139 (2010)
Chattopadhyay J, Kim C, Kim R, Pak D, Korean J. Chem. Eng., 25, 1047 (2009)
Pang YX, et al., The Study of Lignocellulosic Biomass Pyrolysis via Superpro Designer (2019).
Shi K, Yan J, Menendez JA, Luo X, Yang G, Chen Y, Lester E, Wu T, Front. Chem., 8, 3 (2020)
Yan YX, Meng Y, Tang LY, Kostas ET, Lester E, Wu T, Pang CH, Energy Fuels, 33(7), 6463 (2019)
Lolja SA, Haxhi H, Gjyli D, Fuel, 79(2), 207 (2000)
Cheng X, He X, Chen C, Yi S, Energy Technol., 3, 1068 (2015)
Hu Q, Shen Y, Chew JW, Ge T, Wang CH, Chem. Eng. J., 379, 122346 (2020)
Iftikhar H, Zeeshan M, Iqbal S, Muneer B, Razzaq M, Bioresour. Technol., 289, 121647 (2019)
Xu FF, Wang B, Yang D, Hao JH, Qiao YY, Tian YY, Energy Conv. Manag., 171, 1106 (2018)
Rana S, Parikh JK, Mohanty P, Korean J. Chem. Eng., 30(3), 626 (2013)
Dubdub I, Al-Yaari M, Polymers, 12, 891 (2020)
Khoo HH, Resour. Conserv. Recycl., 145, 67 (2019)
Wang S, Liu F, Chen C, Xu X, Korean J. Chem. Eng., 24(3), 495 (2007)
Rasid NSA, Syed-Hassan SSA, Kadir SASA, Asadullah M, Korean J. Chem. Eng., 30(6), 1277 (2013)
Liu X, Wang H, Chen J, He Q, Zhang H, Jiang R, Chen X, Hou P, Acta Scientiae Circumstantiae, 30, 2136 (2010).
Gopinath S, Devan P, Pitchandi K, RSC Adv., 10, 37266 (2020)
Guo XF, Kim GJ, Plasma Chem. Plasma Process., 30(1), 75 (2010)
Perugini F, Mastellone ML, Arena U, Environ. Progress, 24, 137 (2005)
Chen X, Che Q, Li S, Liu Z, Yang H, Chen Y, Wang X, Shao J, Chen H, Fuel Process. Technol., 196, 106180 (2019)
Wang J, Zhang MQ, Chen MQ, Min FF, Zhang SP, Ren ZW, Yan YJ, Thermochim. Acta, 444(1), 110 (2006)
Shao JA, Yan R, Chen HP, Yang HP, Lee DH, Fuel Process. Technol., 91(9), 1113 (2010)
Ochoa A, Bilbao J, Gayubo AG, Castano P, Renew. Sust. Energ. Rev., 119, 109600 (2020)
Ryu HW, Lee HW, Jae J, Park YK, Energy, 179, 669 (2019)
Day M, Cooney JD, MacKinnon M, Polym. Degrad. Stabil., 48, 341 (1995)
Ma R, Huang XF, Zhou Y, Fang L, Sun SC, Zhang PX, Zhang XH, Zhao XX, Bioresour. Technol., 238, 616 (2017)
Sleeswijk AW, van Oers LFCM, Guinee JB, Struijs J, Huijbregts MAJ, Sci. Total Environ., 390, 227 (2008)
Khoo HH, Lim TZ, Tan RBH, Sci. Total Environ., 408, 1367 (2010)
Castellani V, Benini L, Sala S, Pant R, Int. J. Life Cycle Assessment, 21, 1159 (2016)
Heijungs R, Guinee J, Kleijn R, Rovers V, Int. J. Life Cycle Assessment, 12, 211 (2007)
Moharir RV, Kumar S, J. Clean Prod., 208, 65 (2019)
Silva ALP, Prata JC, Walker TR, Duarte AC, Ouyang W, Barcelo D, Rocha-Santos T, Chem. Eng. J., 405, 126683 (2021)
Maafa IM, Polymers, 13, 225 (2021)
Park JJ, Park K, Park JW, Kim DC, Korean J. Chem. Eng., 19(4), 658 (2002)
Lopez A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A, Appl. Catal. B: Environ., 104(3-4), 211 (2011)
Stefanidis SD, Karakoulia SA, Kalogiannis KG, Iliopoulou EF, Delimitis A, Yiannoulakis H, Zampetakis T, Lappas AA, Triantafyllidis KS, Appl. Catal. B: Environ., 196, 155 (2016)
Fu Y, Guo YH, Zhang KX, Energy Fuels, 30(3), 2428 (2016)
Franklin HD, Peters WA, Cariello F, Howard JB, Ind. Eng. Chem. Process Des. Dev., 20, 670 (1981)
Huang Z, Qin L, Xu Z, Chen W, Xing F, Han J, J. Energy Inst., 92, 835 (2019)
Woo OS, Ayala N, Broadbelt LJ, Catal. Today, 55, 161 (2000)
Fan LL, Zhang YN, Liu SY, Zhou N, Chen P, Liu YH, Wang YP, Peng P, Cheng YL, Addy M, Lei HW, Ruan R, Energy Conv. Manag., 149, 432 (2017)
Tang Z, et al., Proc of World of Coal Ash Conference (WOCA) (2013).
Galbreath KC, Zygarlicke CJ, Fuel Process. Technol., 65, 289 (2000)
Zhao H, Ezeh CI, Yin S, Xie Z, Pang CH, Zheng C, Gao X, Wu T, Appl. Catal. B: Environ., 263, 117829 (2020)
Zhao H, Yang G, Pang CH, Fan H, Hall P, Kingman S, Wu T, Energy Procedia, 75, 2421 (2015)
Wang SR, Zhang F, Cai QJ, Zhu LJ, Luo ZY, Int. J. Hydrog. Energy, 40(35), 11406 (2015)
Al-Rahbi AS, Williams PT, J. Mater. Cycles Waste Manage., 21, 1224 (2019)
Gao L, Goldfarb JL, J. Anal. Appl. Pyrol., 137, 96 (2019)
Go YW, Yeom SH, Environ. Eng. Res., 24, 324 (2019)
Benedetti M, Cafiero L, De Angelis D, Dell’Era A, Pasquali M, Stendardo S, Tuffi R, Ciprioti SV, Front. Environ. Sci. Eng., 11, 11 (2017)
Rotliwala Y, Parikh P, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34, 1055 (2012).
Rambau KM, Musyoka NM, Manyala N, Ren J, Langmi HW, Mathe MK, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 53, 1115 (2018)
Lester E, Avila C, Pang CH, Williams O, Perkins J, Gaddipatti S, Tucker G, Barraza JM, Trujillo-Uribe MP, Wu T, Fuel, 232, 845 (2018)
Pang CH, Lester E, Wu T, Biomass Bioenerg., 119, 480 (2018)
Daley PJ, Williams O, Pang CH, Wu T, Lester E, Fuel, 251, 779 (2019)
Tang LY, Yan YX, Meng Y, Wang JY, Jiang P, Pang CH, Wu T, Innovative Solutions for Energy Transitions, 158, 1694 (2019).
Ozsin G, Putum AE, Korean J. Chem. Eng., 35(2), 428 (2018)
Lee KH, Oh SC, Korean J. Chem. Eng., 27(1), 139 (2010)
Chattopadhyay J, Kim C, Kim R, Pak D, Korean J. Chem. Eng., 25, 1047 (2009)
Pang YX, et al., The Study of Lignocellulosic Biomass Pyrolysis via Superpro Designer (2019).
Shi K, Yan J, Menendez JA, Luo X, Yang G, Chen Y, Lester E, Wu T, Front. Chem., 8, 3 (2020)
Yan YX, Meng Y, Tang LY, Kostas ET, Lester E, Wu T, Pang CH, Energy Fuels, 33(7), 6463 (2019)
Lolja SA, Haxhi H, Gjyli D, Fuel, 79(2), 207 (2000)
Cheng X, He X, Chen C, Yi S, Energy Technol., 3, 1068 (2015)
Hu Q, Shen Y, Chew JW, Ge T, Wang CH, Chem. Eng. J., 379, 122346 (2020)
Iftikhar H, Zeeshan M, Iqbal S, Muneer B, Razzaq M, Bioresour. Technol., 289, 121647 (2019)
Xu FF, Wang B, Yang D, Hao JH, Qiao YY, Tian YY, Energy Conv. Manag., 171, 1106 (2018)
Rana S, Parikh JK, Mohanty P, Korean J. Chem. Eng., 30(3), 626 (2013)
Dubdub I, Al-Yaari M, Polymers, 12, 891 (2020)
Khoo HH, Resour. Conserv. Recycl., 145, 67 (2019)
Wang S, Liu F, Chen C, Xu X, Korean J. Chem. Eng., 24(3), 495 (2007)
Rasid NSA, Syed-Hassan SSA, Kadir SASA, Asadullah M, Korean J. Chem. Eng., 30(6), 1277 (2013)
Liu X, Wang H, Chen J, He Q, Zhang H, Jiang R, Chen X, Hou P, Acta Scientiae Circumstantiae, 30, 2136 (2010).
Gopinath S, Devan P, Pitchandi K, RSC Adv., 10, 37266 (2020)
Guo XF, Kim GJ, Plasma Chem. Plasma Process., 30(1), 75 (2010)
Perugini F, Mastellone ML, Arena U, Environ. Progress, 24, 137 (2005)
Chen X, Che Q, Li S, Liu Z, Yang H, Chen Y, Wang X, Shao J, Chen H, Fuel Process. Technol., 196, 106180 (2019)
Wang J, Zhang MQ, Chen MQ, Min FF, Zhang SP, Ren ZW, Yan YJ, Thermochim. Acta, 444(1), 110 (2006)
Shao JA, Yan R, Chen HP, Yang HP, Lee DH, Fuel Process. Technol., 91(9), 1113 (2010)
Ochoa A, Bilbao J, Gayubo AG, Castano P, Renew. Sust. Energ. Rev., 119, 109600 (2020)
Ryu HW, Lee HW, Jae J, Park YK, Energy, 179, 669 (2019)
Day M, Cooney JD, MacKinnon M, Polym. Degrad. Stabil., 48, 341 (1995)
Ma R, Huang XF, Zhou Y, Fang L, Sun SC, Zhang PX, Zhang XH, Zhao XX, Bioresour. Technol., 238, 616 (2017)
Sleeswijk AW, van Oers LFCM, Guinee JB, Struijs J, Huijbregts MAJ, Sci. Total Environ., 390, 227 (2008)
Khoo HH, Lim TZ, Tan RBH, Sci. Total Environ., 408, 1367 (2010)
Castellani V, Benini L, Sala S, Pant R, Int. J. Life Cycle Assessment, 21, 1159 (2016)
Heijungs R, Guinee J, Kleijn R, Rovers V, Int. J. Life Cycle Assessment, 12, 211 (2007)