Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 10, 2021
Accepted June 19, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Evaluation of elemental leaching behavior and morphological changes of steel slag in both acidic and basic conditions for carbon sequestration potential
1School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea 2Department of Earth and Environmental Engineering, Columbia University, 500 W. 120th St, New York, NY 10027, United States, USA 3Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, 500 W. 120th St, New York, NY 10027, United States, USA
Korean Journal of Chemical Engineering, November 2021, 38(11), 2279-2285(7), 10.1007/s11814-021-0874-5
Download PDF
Abstract
Carbon mineralization technology involves reactions between carbon dioxide (CO2) and alkali earth metals such as calcium and/or magnesium to form thermodynamically stable solid carbonates (i.e., CaCO3, and MgCO3), and is currently being recognized as a promising method of both storing and utilizing CO2. In particular, industrial solid wastes such as steelmaking slags (steel and iron slags) are considered to be suitable alkaline feedstock for carbon mineralization. The aqueous carbon mineralization process of steelmaking slags generally includes the extraction of alkali earth metals in a low pH condition, followed by carbonation with CO2 at a high pH. However, since steelmaking slags often exhibit limited leachability depending on their physicochemical properties, it often has an important role in the design of the carbon mineralization process. Here, the leachability of the steel slag was examined in both acidic and basic conditions. The extraction kinetics as well as the various operating factors, such as temperature, and particle size distribution, under an acidic condition were also examined for the potential carbon sequestration using the alkaline wastes.
References
Gadikota G, Nature Rev. Chem., 4, 78 (2020)
Chang R, Kim S, Lee S, Choi S, Kim M, Park Y, Front. Energy Res., 5, 17 (2017)
Moon S, Lee Y, Choi S, Hong S, Lee S, Park AHA, Park Y, Org. Process Res. Dev., 1723, 22 (2018)
Hong S, Sim G, Moon S, Park Y, Energy Fuels, 3532, 34 (2020)
Zhao H, Park Y, Lee DH, Park AHA, Phys. Chem. Chem. Phys., 15, 15185 (2013)
Teir S, Revitzer H, Eloneva S, Fogelholm CJ, Zevenhoven R, Int. J. Miner. Process., 83(1-2), 36 (2007)
Wang X, Maroto-Valer M, Energy Procedia, 4, 4930 (2011)
Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R, Energy, 32(4), 528 (2007)
Rim G, Marchese AK, Stallworth P, Greenbaum SG, Park AHA, Chem. Eng. J., 396, 125204 (2020)
Park AHA, Jadhav R, Fan LS, Can. J. Chem. Eng., 81, 885 (2003)
Lekakh SN, Robertson DGC, Rawlins CH, Richards VL, Peaslee KD, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 39, 484 (2008)
Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM, Chem. Soc. Rev., 43, 8049 (2014)
World Steel Association, World steel in figures, Publications, Belgium (2020).
Engstrom F, Larsson ML, Samuelsson C, Sandstrom A, Robinson R, Bjorkman B, Steel Res. Int., 85, 607 (2014)
Park AHA, Fan LS, Chem. Eng. Sci., 59(22-23), 5241 (2004)
Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA, Chem. Eng. J., 279, 615 (2015)
Ashbrook SE, Dawson DM, Nucl. Magn. Reson., 45, 1 (2016)
Hong S, Huang HD, Rim G, Park Y, Park AHA, ACS Sustain. Chem. Eng., 8(50), 18519 (2020)
Kim SJ, Takekawa J, Shibata H, Kitamura SY, Yamaguchi K, ISIJ Int., 53, 1715 (2013)
Nikolic I, Drincic A, Djurovic D, Karanovic L, Radmilovic VV, Radmilovic VR, Constr. Build. Mater., 108, 1 (2016)
Strohmeier BR, Surf. Interf. Anal., 15, 51 (1990)
Demri B, Muster D, J. Mater. Process. Technol., 55, 311 (1995)
Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA, J. Vacuum Sci. Technol., 21, 933 (1982)
Maraghechi H, Rajabipour F, Pantano CG, Burgos WD, Cem. Concr. Res., 87, 1 (2016)
Pan SY, Ling TC, Park AHA, Chiang PC, Aerosol Air Qual. Res., 18, 829 (2018)
Fogler HS, Elements of chemical reaction engineering, Practice Hall, Publications, New Jersey (2004).
Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717 (2011)
Huijgen WJJ, Witkamp GJ, Comans RNJ, Environ. Sci. Technol., 39, 9676 (2005)
McCabe WL, Smith JS, Harriott P, Unit operations of chemical engineering, New York (2004).
Chang R, Kim S, Lee S, Choi S, Kim M, Park Y, Front. Energy Res., 5, 17 (2017)
Moon S, Lee Y, Choi S, Hong S, Lee S, Park AHA, Park Y, Org. Process Res. Dev., 1723, 22 (2018)
Hong S, Sim G, Moon S, Park Y, Energy Fuels, 3532, 34 (2020)
Zhao H, Park Y, Lee DH, Park AHA, Phys. Chem. Chem. Phys., 15, 15185 (2013)
Teir S, Revitzer H, Eloneva S, Fogelholm CJ, Zevenhoven R, Int. J. Miner. Process., 83(1-2), 36 (2007)
Wang X, Maroto-Valer M, Energy Procedia, 4, 4930 (2011)
Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R, Energy, 32(4), 528 (2007)
Rim G, Marchese AK, Stallworth P, Greenbaum SG, Park AHA, Chem. Eng. J., 396, 125204 (2020)
Park AHA, Jadhav R, Fan LS, Can. J. Chem. Eng., 81, 885 (2003)
Lekakh SN, Robertson DGC, Rawlins CH, Richards VL, Peaslee KD, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 39, 484 (2008)
Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM, Chem. Soc. Rev., 43, 8049 (2014)
World Steel Association, World steel in figures, Publications, Belgium (2020).
Engstrom F, Larsson ML, Samuelsson C, Sandstrom A, Robinson R, Bjorkman B, Steel Res. Int., 85, 607 (2014)
Park AHA, Fan LS, Chem. Eng. Sci., 59(22-23), 5241 (2004)
Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA, Chem. Eng. J., 279, 615 (2015)
Ashbrook SE, Dawson DM, Nucl. Magn. Reson., 45, 1 (2016)
Hong S, Huang HD, Rim G, Park Y, Park AHA, ACS Sustain. Chem. Eng., 8(50), 18519 (2020)
Kim SJ, Takekawa J, Shibata H, Kitamura SY, Yamaguchi K, ISIJ Int., 53, 1715 (2013)
Nikolic I, Drincic A, Djurovic D, Karanovic L, Radmilovic VV, Radmilovic VR, Constr. Build. Mater., 108, 1 (2016)
Strohmeier BR, Surf. Interf. Anal., 15, 51 (1990)
Demri B, Muster D, J. Mater. Process. Technol., 55, 311 (1995)
Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA, J. Vacuum Sci. Technol., 21, 933 (1982)
Maraghechi H, Rajabipour F, Pantano CG, Burgos WD, Cem. Concr. Res., 87, 1 (2016)
Pan SY, Ling TC, Park AHA, Chiang PC, Aerosol Air Qual. Res., 18, 829 (2018)
Fogler HS, Elements of chemical reaction engineering, Practice Hall, Publications, New Jersey (2004).
Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717 (2011)
Huijgen WJJ, Witkamp GJ, Comans RNJ, Environ. Sci. Technol., 39, 9676 (2005)
McCabe WL, Smith JS, Harriott P, Unit operations of chemical engineering, New York (2004).