ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 10, 2021
Accepted August 12, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Performance evaluations of yeast based microbial fuel cells improved by the optimization of dead zone inside carbon felt electrode

1Graduate school of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea 2Department of New and Renewable Energy Convergence, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea 3Department of New and Renewable Energy Convergence, Seoul National University of Science and Technology,, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Korean Journal of Chemical Engineering, November 2021, 38(11), 2347-2352(6), 10.1007/s11814-021-0927-9
downloadDownload PDF

Abstract

The performance of yeast-based microbial fuel cells (MFCs) and the growth pattern of yeast were evaluated with the optimization of dead zone within carbon felt (CF) electrode. Yeast cells were grown onto the different CFs that have 1 to 4mm thicknesses, while optical and electrochemical evaluations were implemented to determine the optimal growth pattern of yeast and to elucidate a relationship between the growth pattern of yeast and the performance of MFC. According to the evaluations, biofilm consisting of high-density yeast cells is formed in the upper 1mm height of CF electrode. As the height goes down, density of yeast cells is reduced to less than half of the upper biofilm, and by calculating the growth rate of yeast cells per CF volume, it is recognized that the coverage of biocatalyst including yeast cell increases from 0.191 to 0.406 μmol/cm3 with decreasing CF thickness. Then, the performance of MFCs using biocatalysts including yeast cells grown on different thick CFs is measured to investigate how the growth pattern of yeast cells affects the performance of MFCs. Results show their maximum power density (MPD) increases linearly as the area that yeast cells are filled increases, and when CF thickness is 1mm, MPD reaches 417.13 W/m3.

References

Kim JR, Jung SH, Regan JM, Logan BE, Bioresour. Technol., 98(13), 2568 (2007)
Schaetzle O, Barriere F, Baronian K, Energy Environ. Sci., 1, 607 (2008)
Wang Y, Chen Y, Wen Q, Zheng H, Xu H, Qi L, Energy, 189, 116342 (2019)
Min B, Logan BE, Environ. Sci. Technol., 38, 5809 (2004)
Min B, Kim JR, Oh SE, Regan JM, Logan BE, Water Res., 39, 4961 (2005)
Rabaey K, Lissens G, Siciliano SD, Verstraete W, Biotechnol. Lett., 25(18), 1531 (2003)
Kim SJ, Yang PY, Water Sci. Technol., 49, 281 (2004)
Kim JR, Zuo Y, Regan JM, Logan BE, Biotechnol. Bioeng., 99(5), 1120 (2008)
Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K, Environ. Sci. Technol., 40, 5181 (2006)
Guo K, Soeriyadi AH, Patil SA, Prevoteau A, Freguia S, Gooding JJ, Rabaey K, Electrochem. Commun., 39, 1 (2014)
Cornejo JA, Lopez C, Babanova S, Santoro C, Artyushkoya K, Ista L, Schuler AJ, Atanassov P, J. Electrochem. Soc., 162(9), H597 (2015)
Fu L, Wang H, Huang Q, Song T, Xie J, Bioprocess Biosyst. Eng., 43, 373 (2020)
Liang YX, Feng HJ, Shen DS, Li N, Guo K, Zhou YY, Xu J, Chen W, Jia YF, Huang B, J. Power Sources, 342, 98 (2017)
Fan Y, Xu S, Schaller R, Jiao J, Chaplen F, Liu H, Biosens. Bioelectron., 26, 1908 (2011)
Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y, Appl. Energy, 222, 369 (2018)
Chen X, Cui D, Wang X, Wang X, Li W, Biosens. Bioelectron., 69, 135 (2015)
Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH, ISME J., 1, 9 (2007)
Logan BE, Nat. Rev. Microbiol., 7, 375 (2009)
Christwardana M, Frattini D, Duarte KDZ, Accardo G, Kwon Y, Appl. Energy, 238, 239 (2019)
Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y, J. Power Sources, 396, 1 (2018)
Duarte KDZ, Frattini D, Kwon Y, Appl. Energy, 256, 113912 (2019)
Frattini D, Accardo G, Duarte KDZ, Kim DH, Kwon Y, Appl. Energy, 261, 114391 (2020)
Zhao Y, Ma Y, Li T, Dong Z, Wang Y, RSC Adv., 8, 2059 (2018)
Feng YJ, Yang Q, Wang X, Logan BE, J. Power Sources, 195(7), 1841 (2010)
Hubenova YV, Rashkov RS, Buchvarov VD, Arnaudova MH, Babanova SM, Mitov MY, Ind. Eng. Chem. Res., 50(2), 557 (2011)
Rawson FJ, Gross AJ, Garrett DJ, Downard AJ, Baronian KHR, Electrochem. Commun., 15, 85 (2012)
Christwardana M, Kwon Y, Bioresour. Technol., 225, 175 (2017)
Hyun KH, Kang SY, Kwon YC, Korean J. Chem. Eng., 36(3), 500 (2019)
Yang SW, Chung YJ, Lee KS, Kwon YC, J. Ind. Eng. Chem., 90, 351 (2020)
Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y, J. Power Sources, 402, 402 (2018)
Verstrepen KJ, Klis FM, Mol. Microbiol., 60, 5 (2006)
Duarte KDZ, Kwon Y, J. Power Sources, 474, 228496 (2020)
Duarte KDZ, Kwon Y, J. Power Sources, 474, 228651 (2020)
Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z, Mol. Microbiol., 47, 745 (2003)
Vachova L, Stovi V, Hlavacek O, Chernyavskiy O, Stepanek L, Kubinova L, Palkova Z, J. Cell Biol., 194, 679 (2011)
Fotouhi L, Fatollahzadeh M, Heravi MM, Int. J. Electrochem. Sci., 7, 3919 (2012)
Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM, Energy Environ. Sci., 2, 506 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로