Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 21, 2021
Accepted July 5, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Data-driven fault detection for chemical processes using autoencoder with data augmentation
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea 1Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea 2School of Chemical Engineering, University of Ulsan, 93, Daehak-ro, Nam-gu, Ulsan 44610, Korea
jdonghwi@ulsan.ac.kr
Korean Journal of Chemical Engineering, December 2021, 38(12), 2406-2422(17), 10.1007/s11814-021-0894-1
Download PDF
Abstract
Process monitoring plays an essential role in safe and profitable operations. Various data-driven fault detection models have been suggested, but they cannot perform properly when the training data are insufficient or the information to construct the manifold is confined to a specific region. In this study, a process monitoring framework integrated with data augmentation is proposed to supplement rare but informative samples for the boundary regions of the normal state. To generate data for augmentation, a variational autoencoder was employed to exploit its advantage of stable convergence. For the construction of the process monitoring system, an autoencoder that can extract useful features in an unsupervised manner was used. To illustrate the efficacy of the proposed method, a case study for the Tennessee Eastman process was applied. The results show that the proposed method can improve the monitoring performance compared to the autoencoder without data augmentation in terms of fault detection accuracy and delay, particularly within the feature space.
Keywords
References
Venkatsubramanian V, Rengaswamy R, Yin K, Kavuri SN, Comput. Chem. Eng., 27(3), 293 (2003)
Lee J, Yoo C, Wook S, Vanrolleghem PA, Lee I, 59, 223 (2004).
Yan W, Guo P, Li Z, Chemom. Intell. Lab. Syst., 15, 31 (2016)
Holden AJ, Science, 313, 504 (2006)
Lv F, Wen C, Bao Z, Liu M, 2016 Am. Control Conf., 2, 6851 (2016).
Fan J, Wang W, IEEE, 1001 (2017).
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA, J. Mach. Learn. Res., 11, 3371 (2010)
Rifai S, Vincent P, Muller X, Glorot X, Bengio Y, Proc. 28th Int. Conf. Mach. Learn. ICML 2011, 1, 833 (2011).
Jiang L, Song Z, Ge Z, Chen J, Ind. Eng. Chem. Res., 56, 26 (2017)
Heo S, Lee JH, Processes, 7, 7 (2019)
Zhang ZH, Jiang T, Li SH, Yang YP, J. Process Control, 64, 49 (2018)
Yu W, Zhao C, IEEE Trans. Control Syst. Technol., 1 (2019).
Zhao H, Chemom. Intell. Lab. Syst., 176, 11 (2018)
Simard PY, Steinkraus D, Platt JC, Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, 958 (2003).
Han H, Wang WY, Mao BH, in Lecture Notes in Computer Science, 3644, 878 (2005).
Wong SC, Mcdonnell MD, 2016 Int. Conf. Digit. Image Comput. Tech. Appl., 1 (2016).
Devries T, Taylor GW, arXiv Prepr. arXiv1702.05538, 1 (2017).
Wan Z, Zhang Y, He H, IEEE, 1 (2017).
Etworks N, Storkey A, Edwards H, arXiv preprint arXiv:1711.04340, 1 (2017).
Jorge J, Paredes R, Sanchez JA, Bened M, VISIGRAPP (5:VISAPP), 96 (2018).
Hsu WN, Zhang Y, Glass J, IEEE Autom. Speech Recognit. Underst. Work., 1, 16 (2017).
Gao X, Deng F, Yue X, Neurocomputing, 396, 487 (2019)
Lim SK, Loo Y, Tran N, Cheung N, Roig G, Elovici Y, 2018 IEEE Int. Conf. Data Min., 1122 (2018).
Mellon C, Berkeley UC, arXiv preprint arXiv:1606.05908, 1 (2016).
Krogh A, Hertz JA, Adv. Neural Inf. Process. Syst. (1992).
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R, J. Mach. Learn. Res., 15(1), 1929 (2014)
Ioffe S, Szegedy C, Int. Conf. Mach. Learn. (2015).
Han S, Pool J, Tran J, Dally WJ, arXiv preprint arXiv:1506.02626 (2015).
Heo S, Lee JH, Comput. Chem. Eng., 127, 1 (2019)
Baldi P, Hornik K, Neural Networks, 2(1), 53 (1989)
Zhao S, Song J, Ermon S, Proc. AAAI Conf. Artif. Intell., 33(1), 5885 (2019)
Downs JJ, Company EC, Comput. Chem. Eng., 17, 3 (1993)
Bathelt A, Ricker NL, Jelali M, IFAC-PapersOnLine, 48(8), 309 (2014).
Ricker NL, J. Process Control, 6(4), 205 (1996)
Lee H, Kim C, Lim S, Min J, Comput. Chem. Eng., 142, 107064 (2020)
Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K, Comput. Chem. Eng., 27(3), 327 (2003)
Samuel RT, Cao Y, Syst. Sci. Control Eng., 4(1), 165 (2016)
Olson DL, Delen D, Advanced data mining techniques, Springer, December (2013).
Kim C, Lee H, Kim K, Lee Y, Lee WB, Ind. Eng. Chem. Res., 57(39), 13144 (2018)
Makhzani A, Frey B, Goodfellow I, arXiv Prepr. arXiv1511.05644 (2014).
Lee J, Yoo C, Wook S, Vanrolleghem PA, Lee I, 59, 223 (2004).
Yan W, Guo P, Li Z, Chemom. Intell. Lab. Syst., 15, 31 (2016)
Holden AJ, Science, 313, 504 (2006)
Lv F, Wen C, Bao Z, Liu M, 2016 Am. Control Conf., 2, 6851 (2016).
Fan J, Wang W, IEEE, 1001 (2017).
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA, J. Mach. Learn. Res., 11, 3371 (2010)
Rifai S, Vincent P, Muller X, Glorot X, Bengio Y, Proc. 28th Int. Conf. Mach. Learn. ICML 2011, 1, 833 (2011).
Jiang L, Song Z, Ge Z, Chen J, Ind. Eng. Chem. Res., 56, 26 (2017)
Heo S, Lee JH, Processes, 7, 7 (2019)
Zhang ZH, Jiang T, Li SH, Yang YP, J. Process Control, 64, 49 (2018)
Yu W, Zhao C, IEEE Trans. Control Syst. Technol., 1 (2019).
Zhao H, Chemom. Intell. Lab. Syst., 176, 11 (2018)
Simard PY, Steinkraus D, Platt JC, Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, 958 (2003).
Han H, Wang WY, Mao BH, in Lecture Notes in Computer Science, 3644, 878 (2005).
Wong SC, Mcdonnell MD, 2016 Int. Conf. Digit. Image Comput. Tech. Appl., 1 (2016).
Devries T, Taylor GW, arXiv Prepr. arXiv1702.05538, 1 (2017).
Wan Z, Zhang Y, He H, IEEE, 1 (2017).
Etworks N, Storkey A, Edwards H, arXiv preprint arXiv:1711.04340, 1 (2017).
Jorge J, Paredes R, Sanchez JA, Bened M, VISIGRAPP (5:VISAPP), 96 (2018).
Hsu WN, Zhang Y, Glass J, IEEE Autom. Speech Recognit. Underst. Work., 1, 16 (2017).
Gao X, Deng F, Yue X, Neurocomputing, 396, 487 (2019)
Lim SK, Loo Y, Tran N, Cheung N, Roig G, Elovici Y, 2018 IEEE Int. Conf. Data Min., 1122 (2018).
Mellon C, Berkeley UC, arXiv preprint arXiv:1606.05908, 1 (2016).
Krogh A, Hertz JA, Adv. Neural Inf. Process. Syst. (1992).
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R, J. Mach. Learn. Res., 15(1), 1929 (2014)
Ioffe S, Szegedy C, Int. Conf. Mach. Learn. (2015).
Han S, Pool J, Tran J, Dally WJ, arXiv preprint arXiv:1506.02626 (2015).
Heo S, Lee JH, Comput. Chem. Eng., 127, 1 (2019)
Baldi P, Hornik K, Neural Networks, 2(1), 53 (1989)
Zhao S, Song J, Ermon S, Proc. AAAI Conf. Artif. Intell., 33(1), 5885 (2019)
Downs JJ, Company EC, Comput. Chem. Eng., 17, 3 (1993)
Bathelt A, Ricker NL, Jelali M, IFAC-PapersOnLine, 48(8), 309 (2014).
Ricker NL, J. Process Control, 6(4), 205 (1996)
Lee H, Kim C, Lim S, Min J, Comput. Chem. Eng., 142, 107064 (2020)
Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K, Comput. Chem. Eng., 27(3), 327 (2003)
Samuel RT, Cao Y, Syst. Sci. Control Eng., 4(1), 165 (2016)
Olson DL, Delen D, Advanced data mining techniques, Springer, December (2013).
Kim C, Lee H, Kim K, Lee Y, Lee WB, Ind. Eng. Chem. Res., 57(39), 13144 (2018)
Makhzani A, Frey B, Goodfellow I, arXiv Prepr. arXiv1511.05644 (2014).