Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 6, 2021
Accepted August 3, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Spectroscopic, microscopic and antibacterial studies of green synthesized Ag nanoparticles at room temperature using Psidium guajava leaf extract
Tatan Ghosh1 2†
Amarnath Chattopadhyay3
Atis Chandra Mandal4
Subhamay Pramanik2
Sumit Mukherjee2
Probodh Kumar Kuiri2†
1Department of Physics, Balarampur College, P.O.-Rangadih, Dist-Purulia 723143, West Bengal, India 2Department of Physics, Sidho-Kanho-Birsha University, Purulia 723104, West Bengal, India 3Department of Microbiology, Suri Vidyasagar College, P.O.-Suri, Dist-Birbhum 731101, West Bengal, India 4Department of Physics, The University of Burdwan, Burdwan 713104, West Bengal, India
tatanghosh83@gmail.com
Korean Journal of Chemical Engineering, December 2021, 38(12), 2549-2559(11), 10.1007/s11814-021-0918-x
Download PDF
Abstract
Spectroscopic, microscopic and size dependent antibacterial efficiency of Ag nanoparticles (NPs) synthesized by green approach were studied. Five different samples of Ag NPs having average sizes in the range of ~14 to ~21 nm were synthesized using Psidium guajava (Guava) leaf extract (0.25ml, 0.5ml, 1ml, 2ml, 4ml, respectively) in 50ml aqueous AgNO3 solution of molar concentration of 1mM. The sizes of the NPs were found to increase with increase in concentration of leaf extract. Such increase in NP size is mainly due to the increase in biomolecules, in the solution, that transforms the Ag ions to Ag NPs. Spectroscopic and microscopic properties of as-synthesized Ag NPs were obtained by characterizing the prepared samples using suitable and affordable methodologies. These Ag NPs showed significant size dependent antibacterial effect. The minimum inhibitory concentration and minimum lethal concentration of the sample showing highest zone of inhibition against Escherichia coli (E. coli) was determined as 40 μg/ml and 80 μg/ml, respectively. Percentage of survivability was also measured through viable plate count. The smallest Ag NPs (average size ~14 nm) considered here produced the best antibacterial activity against the tested E. coli compared to Ag NPs having larger sizes at identical bacterial concentration. The enhanced antibacterial efficiency for smaller Ag NPs is mainly due to larger surface area-to-volume ratio of smaller NPs. The probable mechanism of bio-reduction of silver ions and formation of Ag NPs has also been well explained, which justifies the result obtained in this work.
Keywords
References
Prabhu S, Poulose EK, Int. Nano Lett., 2, 32 (2012)
Ghosh S, Patil S, Ahire M, et al., Int. J. Nanomedicine, 7, 483 (2012)
Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK, J Nanobiotechnology, 9, 30 (2011)
Rai M, Yadav A, Gade A, Biotechnol. Adv., 27, 76 (2009)
Klasen HJ, Burns, 26, 17 (2000)
Sondi I, Salopek-Sondi B, J. Colloid Interface Sci., 275(1), 177 (2004)
Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C, J. Nanobiotechnology, 8, 1 (2010)
Daniel MC, Astruc D, Chem. Rev., 104(1), 293 (2004)
Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim S, Choi K, Kwon IC, Kim K, Ahn CH, Angew. Chem.-Int. Edit., 47, 2804 (2008)
Kelkawi AHA, Kajani AA, Bordbar AK, IET Nanobiotechnol., 11, 370 (2017)
Muhammad Z, Raza A, Ghafoor S, Naeem A, Naz SS, Riaz S, Ahmed W, Rana NF, Eur. J. Pharm. Sci., 91, 251 (2016)
Agnihotri S, Mukherji S, Mukherji S, RSC Adv., 4, 3974 (2014)
Dobrucka R, Długaszewska J, Indian J. Microbiol., 55, 168 (2015)
Jeong Y, Lim DW, Choi J, Adv. Mater. Sci. Eng., 2014, 763807 (2014)
Vasilev K, Coatings, 9, 654 (2019)
Casolaro M, Casolaro I, Akimoto J, Ueda M, Ueki M, Ito Y, Gels, 4, 42 (2018)
Kvitek O, Mutylo E, Vokata B, Ulbrich P, Fajstavr D, Reznickova A, Svorcik V, Coatings, 10, 1046 (2020)
Petrova I, Kozlova O, Vladimirtseva E, Smirnova S, Lipina A, Odintsova O, Coatings, 11, 159 (2021)
Mahmud S, Sultana MZ, Pervez MN, Habib MA, Liu HH, Fibers, 5, 35 (2017)
Mukherji S, Bharti S, Shukla G, Mukherji S, Phys. Sci. Rev., 4, 201700 (2018)
Shahzad A, Kim WS, Yu T, RSC Adv., 5, 28652 (2015)
Shahzad A, Chung M, Yu T, Kim WS, Chem. Asian J., 10, 2512 (2015)
Han HJ, Yu T, Kim WS, Im SH, J. Cryst. Growth, 469, 46 (2017)
Hussain F, Shaban SM, Kim JH, Kim DH, Korean J. Chem. Eng., 36(6), 988 (2019)
Seku K, Gangapuram BP, Pejjai B, Kadimpati KK, Golla N, J. Nanostruct. Chem., 8, 179 (2018)
Khodadadi MR, Olya ME, Naeimi A, Korean J. Chem. Eng., 33(7), 2018 (2016)
Kuiri PK, Mahapatra DP, Adv. Sci. Eng., 6, 290 (2012)
Kuiri PK, J. Appl. Phys., 108, 054301 (2010)
Raveendran P, Fu J, Wallen SL, J. Am. Chem. Soc., 125(46), 13940 (2003)
Roy P, Das B, Mohanty A, Mohapatra S, Appl. Nanosci., 7, 843 (2017)
Wiley JM, Sherwood LM, Woolverton CJ, Prescott’s microbiology, 9th Ed., McGraw Hill International (2013).
Ghosh T, Chottopadhyay A, Mandal AC, Pramanik S, Kuiri PK, Chin. J. Phys., 68, 835 (2020)
Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M, Sci. Rep., 6, 32539 (2016)
Siddhant J, Mehata MS, Sci. Rep., 7, 15867 (2017)
Patterson AL, Phys. Rev., 56, 978 (1939)
Pramanik S, Ghosh T, Ghosh M, De SC, Kuiri PK, Adv. Sci. Eng. Med., 9, 414 (2017)
Mukherjee S, Pramanik S, Das S, Chakraborty S, Nath R, Kuiri PK, J. Alloy. Compd., 814, 152015 (2020)
Ong HC, Zhu ZXE, Du GT, Appl. Phys. Lett., 80, 941 (2002)
Toro MCG, Schlegel JP, Giraldo CHC, Chemistry Select, 3, 8936 (2018)
Fattah WIA, Sallam ASM, Attawa NA, Salama E, Maghraby AM, Ali GW, Mater. Res. Express., 1, 035024 (2014)
Verma A, Mehata MS, J. Radiat. Res. Appl. Sc., 9, 109 (2016)
Kuiri PK, Pramanik S, J. Appl. Phys., 123, 154302 (2018)
Parang Z, Keshavarz A, Farahi S, Elahi SM, Ghoranneviss M, Parhoodeh S, Scientia Iranica, 19, 843 (2012)
Pramanik S, Mondal S, Mandal AC, Mukherjee S, Das S, Ghosh T, Nath R, Ghosh M, Kuiri PK, J. Alloy. Compd., 849, 156684 (2020)
Sougandhi PR, Reddeppa M, Harini SS, Rani TS, Gangadhara R, J. of Drug Delivery and Therapeutics, 8, 301 (2018).
Hemadi S, Shojaosadati SA, Polyhedron, 171, 172 (2019)
Jayakumar A, Vedhaiyan RK, Korean J. Chem. Eng., 36(11), 1869 (2019)
Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y, Int. J. Nanomedicine, 13, 3311 (2018)
Virkutyte J, Varma RS, Sustainable preparation of metal nanoparticles, Royal Society of Chemistry, Cambridge (2012).
Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD, RSC Adv., 9, 2673 (2019)
Duran N, et al., Nanomedicine: Nanotechnology, Biology and Medicine, 12, 789 (2016).
Parashar UK, Kumar V, Bera T, Saxena PS, Nath G, Srivastava SK, Giri R, Srivastava A, Nanotechnology, 22, 415104 (2011)
Bose D, Chatterjee S, Appl. Nanosci., 6, 895 (2016)
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO, Acta Nature, 6, 35 (2014)
Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A, Colloids Surf. B: Biointerfaces, 81, 81 (2010)
Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux JL, Food Chem., 97, 679 (2006)
Ghosh S, Patil S, Ahire M, et al., Int. J. Nanomedicine, 7, 483 (2012)
Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK, J Nanobiotechnology, 9, 30 (2011)
Rai M, Yadav A, Gade A, Biotechnol. Adv., 27, 76 (2009)
Klasen HJ, Burns, 26, 17 (2000)
Sondi I, Salopek-Sondi B, J. Colloid Interface Sci., 275(1), 177 (2004)
Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C, J. Nanobiotechnology, 8, 1 (2010)
Daniel MC, Astruc D, Chem. Rev., 104(1), 293 (2004)
Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim S, Choi K, Kwon IC, Kim K, Ahn CH, Angew. Chem.-Int. Edit., 47, 2804 (2008)
Kelkawi AHA, Kajani AA, Bordbar AK, IET Nanobiotechnol., 11, 370 (2017)
Muhammad Z, Raza A, Ghafoor S, Naeem A, Naz SS, Riaz S, Ahmed W, Rana NF, Eur. J. Pharm. Sci., 91, 251 (2016)
Agnihotri S, Mukherji S, Mukherji S, RSC Adv., 4, 3974 (2014)
Dobrucka R, Długaszewska J, Indian J. Microbiol., 55, 168 (2015)
Jeong Y, Lim DW, Choi J, Adv. Mater. Sci. Eng., 2014, 763807 (2014)
Vasilev K, Coatings, 9, 654 (2019)
Casolaro M, Casolaro I, Akimoto J, Ueda M, Ueki M, Ito Y, Gels, 4, 42 (2018)
Kvitek O, Mutylo E, Vokata B, Ulbrich P, Fajstavr D, Reznickova A, Svorcik V, Coatings, 10, 1046 (2020)
Petrova I, Kozlova O, Vladimirtseva E, Smirnova S, Lipina A, Odintsova O, Coatings, 11, 159 (2021)
Mahmud S, Sultana MZ, Pervez MN, Habib MA, Liu HH, Fibers, 5, 35 (2017)
Mukherji S, Bharti S, Shukla G, Mukherji S, Phys. Sci. Rev., 4, 201700 (2018)
Shahzad A, Kim WS, Yu T, RSC Adv., 5, 28652 (2015)
Shahzad A, Chung M, Yu T, Kim WS, Chem. Asian J., 10, 2512 (2015)
Han HJ, Yu T, Kim WS, Im SH, J. Cryst. Growth, 469, 46 (2017)
Hussain F, Shaban SM, Kim JH, Kim DH, Korean J. Chem. Eng., 36(6), 988 (2019)
Seku K, Gangapuram BP, Pejjai B, Kadimpati KK, Golla N, J. Nanostruct. Chem., 8, 179 (2018)
Khodadadi MR, Olya ME, Naeimi A, Korean J. Chem. Eng., 33(7), 2018 (2016)
Kuiri PK, Mahapatra DP, Adv. Sci. Eng., 6, 290 (2012)
Kuiri PK, J. Appl. Phys., 108, 054301 (2010)
Raveendran P, Fu J, Wallen SL, J. Am. Chem. Soc., 125(46), 13940 (2003)
Roy P, Das B, Mohanty A, Mohapatra S, Appl. Nanosci., 7, 843 (2017)
Wiley JM, Sherwood LM, Woolverton CJ, Prescott’s microbiology, 9th Ed., McGraw Hill International (2013).
Ghosh T, Chottopadhyay A, Mandal AC, Pramanik S, Kuiri PK, Chin. J. Phys., 68, 835 (2020)
Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M, Sci. Rep., 6, 32539 (2016)
Siddhant J, Mehata MS, Sci. Rep., 7, 15867 (2017)
Patterson AL, Phys. Rev., 56, 978 (1939)
Pramanik S, Ghosh T, Ghosh M, De SC, Kuiri PK, Adv. Sci. Eng. Med., 9, 414 (2017)
Mukherjee S, Pramanik S, Das S, Chakraborty S, Nath R, Kuiri PK, J. Alloy. Compd., 814, 152015 (2020)
Ong HC, Zhu ZXE, Du GT, Appl. Phys. Lett., 80, 941 (2002)
Toro MCG, Schlegel JP, Giraldo CHC, Chemistry Select, 3, 8936 (2018)
Fattah WIA, Sallam ASM, Attawa NA, Salama E, Maghraby AM, Ali GW, Mater. Res. Express., 1, 035024 (2014)
Verma A, Mehata MS, J. Radiat. Res. Appl. Sc., 9, 109 (2016)
Kuiri PK, Pramanik S, J. Appl. Phys., 123, 154302 (2018)
Parang Z, Keshavarz A, Farahi S, Elahi SM, Ghoranneviss M, Parhoodeh S, Scientia Iranica, 19, 843 (2012)
Pramanik S, Mondal S, Mandal AC, Mukherjee S, Das S, Ghosh T, Nath R, Ghosh M, Kuiri PK, J. Alloy. Compd., 849, 156684 (2020)
Sougandhi PR, Reddeppa M, Harini SS, Rani TS, Gangadhara R, J. of Drug Delivery and Therapeutics, 8, 301 (2018).
Hemadi S, Shojaosadati SA, Polyhedron, 171, 172 (2019)
Jayakumar A, Vedhaiyan RK, Korean J. Chem. Eng., 36(11), 1869 (2019)
Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y, Int. J. Nanomedicine, 13, 3311 (2018)
Virkutyte J, Varma RS, Sustainable preparation of metal nanoparticles, Royal Society of Chemistry, Cambridge (2012).
Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD, RSC Adv., 9, 2673 (2019)
Duran N, et al., Nanomedicine: Nanotechnology, Biology and Medicine, 12, 789 (2016).
Parashar UK, Kumar V, Bera T, Saxena PS, Nath G, Srivastava SK, Giri R, Srivastava A, Nanotechnology, 22, 415104 (2011)
Bose D, Chatterjee S, Appl. Nanosci., 6, 895 (2016)
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO, Acta Nature, 6, 35 (2014)
Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A, Colloids Surf. B: Biointerfaces, 81, 81 (2010)
Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux JL, Food Chem., 97, 679 (2006)