ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 11, 2020
Accepted September 6, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of catalysts on structural and adsorptive properties of iron oxide-silica nanocomposites

1Coriolan Dragulescu Institute of Chemistry, 24th Mihai Viteazul Bvd., 300223, Timisoara, Romania 2National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Prof. Dr. Aurel Paunescu-Podeanu Street, 300569, Timisoara, Romania 3Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Pestalozzi Str. No. 16, RO-300115, Timisoara, Romania 4Politechnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6th Vasile Parvan Bvd., 300223, Timisoara, Romania 5Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, Russian Federation 6Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia, Russian Federation 7Institute for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly-Thege str. 29-33 1121 Budapest, Hungary
adina.negrea@chim.upt.ro
Korean Journal of Chemical Engineering, February 2021, 38(2), 292-305(14), 10.1007/s11814-020-0675-2
downloadDownload PDF

Abstract

Iron oxide-silica nanocomposites were prepared by sol-gel method using ammonia (NH3), acetic acid (CH3COOH) and hydrochloric acid (HCl) catalysts to generate different pH values for the reaction conditions. As starting precursors, for the silica, respectively, for the iron oxide, tetraethylorthosilicate (TEOS) and iron-III-acetylacetonate were used. The physico-chemical characterization of the materials revealed that the sample obtained with HCl catalyst displays the largest surface area (300m2/g), the most compact network structure, highest surface roughness, biggest crystallite size (14 nm), magnetization (7 emu/g) and superparamagnetic behavior. These materials were tested for adsorption of Cr6+ and Zn2+ from aqueous solution. Sample M-HCl presented the highest surface area and was further used for adsorption of metal ions. Kinetic, thermodynamic and equilibrium adsorption measurements studies were made for Cr6+ and Zn2+. To establish the material behavior from a thermodynamic point of view, temperature and contact time of adsorption process, activation energy, free energy, of standard enthalpy and entropy were calculated. The kinetic behavior was modelled by pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models and the adsorption characteristics were determined by modelling the experimental data with Langmuir, Freundlich and Sips isotherms.

References

Tchounwou PB, et al., Clinical and Environmental Toxicology. Experientia Supplementum, Springer, Basel (2012).
Bianchi V, Zantedeschi A, Montaldi A, Majone F, Toxicol. Lett., 23, 51 (1984)
Chen SH, Yue QY, Gao BY, Li Q, Xu X, Chem. Eng. J., 168(2), 909 (2011)
Shariati S, Khabazipour M, Safa F, J. Porous Mat., 24, 129 (2017)
Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE, ACS Nano, 10, 2121 (2008)
Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
Dinker MK, Kulkarni PS, J. Chem. Eng. Data, 60(9), 2521 (2015)
Martin PP, Agosto MF, Bengoa JF, Fellenz NA, J. Environ. Chem. Eng., 5, 1210 (2017)
Almeida JC, Cardoso CED, Tavares DS, Freitas R, Trindade T, Vale C, Pereira E, Trends Anal. Chem., 118, 277 (2019)
Biswas K, Bandhoyapadhyay D, Ghosh UC, Adsorption, 13, 83 (2007)
Alcala MD, Real C, Solid State Ion., 177(9-10), 955 (2006)
Zhu S, Leng YC, Yan MH, Tuo XG, Yang JB, Almasy L, Tian Q, Sun GA, Zou L, Li QT, Courtois J, Zhang H, Appl. Surf. Sci., 447, 381 (2018)
Wang WW, Yao JL, Mater. Lett., 64, 840 (2010)
Desch RJ, Kim J, Thiel SW, Microporous Mesoporous Mater., 187, 29 (2014)
Kishore PNR, Jeevanandam P, J. Alloy. Compd., 522, 51 (2012)
Nicola R, Costisor O, Ciopec M, Negrea A, et al., Appl. Sci., 10, 2726 (2020)
Zhang X, Cheng T, Chen C, Wang L, Deng Q, Chen G, Ye C, Mater. Res. Express, 7, 085007 (2020)
Bashir M, Riaz S, Naseem S, Mater. Today: Proceedings, 2B, 5664 (2015)
Ercuta A, IEEE Trans. Instrum. Meas., 69, 1643 (2020)
Kuklin AI, Soloviev DV, Rogachev AV, Utrobin PK, et al., J. Phys. Conf. Ser., 291, 012013 (2011)
Kuklin AI, Rogov AD, Gorshkova YE, Utrobin PK, et al.,, Phys. Part. Nucl. Lett., 8(2), 200 (2011)
Kuklin AI, Islamov AK, Gordeliy VI, Neutron News, 16, 16 (2005)
Nyam-Osor M, Soloviov DV, Kovalev YS, Zhigunov A, Rogachev AV, Ivankov OI, Erhan RV, Kuklin AI, J. Phys. Conf. Ser., 351(1), 012024 (2012)
Soloviev AG, Solovjeva TM, Ivankov OI, Soloviov DV, Rogachev AV, Kuklin AI, J. Phys. Conf. Ser., 848(1), 012020 (2017)
Scherrer P, Nachr. Ges. Wiss. Gottingen, 26, 98 (1918)
Dudas Z, Fagadar-Cosma E, Len A, Romanszki L, Almasy L, Vlad-Oros B, Dascalu D, Krajnc A, Kriechbaum M, Kuncser A, Materials, 11(4), 565 (2018)
Putz AM, Len A, Ianasi C, Savii C, Almasy L, Korean J. Chem. Eng., 33(3), 749 (2016)
Gubanova NN, Baranchikov AY, Kopitsa GP, Almasy L, Angelov B, Yapryntsev AD, Rosta L, Ivanov VK, Ultrason. Sonochem., 24, 230 (2015)
Ianasi C, Costisor O, Putz AM, Lazau R, Negrea A, Niznansky D, Sacarescu L, Savii C, Process. Appl. Ceram., 10, 265 (2016)
Ercuta A, Chirita M, J. Cryst. Growth, 380, 182 (2013)
Handa M, Miyamoto H, Inorg. Chim. Acta., 203, 61 (1992)
Yukawa Y, Handa M, Hoshino Y, J. Solution Chem., 24(1), 19 (1995)
Colomban P, Slodczyk A, Acta Phys. Pol. A, 116, 7 (2009)
Diaz-Acosta I, Baker J, Cordes W, Pulay P, J. Phys. Chem. A, 105(1), 238 (2001)
Jayasooriya UA, Peck JNT, Barclay JE, Hardy SM, Chumakov AI, Evans DJ, Pickett CJ, Oganesyan VS, Chem. Phys. Lett., 518, 119 (2011)
Pavel I, Szeghalmi A, Moigno D, Cinta S, Kiefer W, Biopolymers, 72(1), 25 (2003)
Tirrell TF, Paddock ML, Conlan AR, Smoll EJ, Nechushtai R, Jennings PA, Kim JE, Biochemistry, 48(22), 4747 (2009)
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
Ianasi C, Piciorus M, Nicola R, Cipec M, Negrea A, Niznansky D, Len A, Almasy L, Putz AM, Korean J. Chem. Eng., 36(5), 688 (2019)
Kosmulski M, Surface charging and points of zero charge, engineering and technology, Physical Sciences, CRC Press, Boca Raton (2009).
Mulani K, Daniels S, Rajdeo K, Tambe S, Chavan N, J. Polym., 2013, Article ID 798368 (2013).
Ho YS, J. Hazard. Mater., 136(3), 681 (2006)
Yurdakoc M, Seki Y, Karahan S, Yurdakoc K, J. Colloid Interface Sci., 286(2), 440 (2005)
Zhang Y, Yu F, Cheng W, Wang J, Ma J, J. Chem., 2017, Article ID 1936829 (2017).
Abraham R, Mathew S, Kurian S, Saravanakumar MP, Ealias AM, George G, Ultrason. Sonochem., 49, 175 (2018)
Vijayaraghavan K, Mao J, Yun YS, Bioresour. Technol., 99(8), 2864 (2008)
Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77 (2011)
Duong DD, Adsorption analysis: Equilibria and kinetics, series on chemical engineering, vol. 2, Imperial College Press, London (1998).
Ren ZF, Xu X, Wang X, Gao BY, Yue QY, Song W, Zhang L, Wang HT, J. Colloid Interface Sci., 468, 313 (2016)
Handore K, Bhavsar S, Horne A, Chhattise P, Mohite K, Ambekar J, Pande N, Chabukswar V, J. Macromol. Sci. A, 51, 941 (2014)
Chowdhury SR, Yanful EK, Pratt AR, J. Hazard. Mater., 235-236, 246 (2012)
Kelly A, Knowles KM, Crystallography and crystal defects, 2nd Ed., Wiley, United Kingdom (2012).
Igwe JC, Abia AA, Ecletica Quimica, 32(1), 33 (2007)
Kavelin V, Fesenko O, Dubyna H, Vidal C, Klar TA, Hrelescu C, Dolgov L, Nanoscale Res. Lett., 12, 197 (2017)
Mohapatra BK, Rao DVR, Z. Anorg. Allg. Chem., 372(3), 332 (1970)
Windholz M, The Merck Index, 9th Ed., vol. 802, Merck & Company, Whitehouse Station, NJ, USA (1976).
Ealias AM, Saravanakumar MP, J. Environ. Manage., 206, 215 (2018)
Bhatt R, Sreedhar B, Padmaja P, Int. J. Biol. Macromol., 104, 1254 (2017)
Gao H, Liu Y, Zeng G, Xu W, Li T, Xia W, J. Hazard. Mater., 150, 446 (2008)
Burillo G, Serrano-Gomez J, Bonifacio-Martinez J, J. Mexican Chem. Soc., 57, 80 (2013)
Gheju M, Balcu I, Mosoarca G, J. Hazard. Mater., 310, 270 (2016)
Aliyu A, Scientific African, 3, e00069 (2019)
Mnasri-Ghnimi S, Frini-Srasra N, Appl. Clay Sci., 158, 150 (2018)
Renu, Agarwal M, Singh K, J. Water Reuse Desal., 7(4), 387 (2016)
Ben Tahar L, Oueslati MH, Abualreish MJA, J. Colloid Interface Sci., 512, 115 (2018)
Shi S, Yang J, Liang S, Li M, Gan Q, Xiao K, Hu J, Sci. Total Environ., 628-629, 499 (2018)
Li Y, Zhu S, Liu Q, Chen Z, Gu J, Zhu C, Lu T, Zhang D, Ma J, Water Res., 47, 4188 (2013)
Wan C, Li J, ACS Sustain. Chem. Eng., 3, 2142 (2015)
Srivastava V, Sharma YC, Water Air Soil Pollut., 225, 1 (2013)
Hu J, Chen GH, Lo IMC, Water Res., 39, 4528 (2005)
Wang P, Lo IMC, Water Res., 43, 3727 (2009)
Jiang WJ, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O'Shea K, Chem. Eng. J., 222, 527 (2013)
Mahato BN, Krithiga T, Mater Today: Proc., 17, 303 (2019)
Ullah R, Deb BK, Mollah MYA, Defect Diffus. Forum, 353, 33 (2014)
Zhang J, Lin S, Han M, Su Q, Xia L, Hui Z, Water, 12, 446 (2020)
Wei J, Yang ZX, Sun Y, Wang CK, Fan JL, Kang GY, Zhang R, Dong XY, Li YF, J. Mater. Sci., 54(8), 6709 (2019)
Xing M, Xie Q, Li X, Guan T, Wu D, Environ. Technol., 41(5), 658 (2020)
Ahmadi A, Heidarzadeh S, Mokhtari AR, Darezereshki E, Harouni HA, J. Geochem. Explor., 147, 151 (2014)
Yuan L, Liu Y, Chem. Eng., 432, 215 (2013)
Matei E, Predescu AM, Coman G, Balanescu M, Sohaciu M, Predescu C, Favier L, Niculescu M, Environ. Eng. Manag. J., 15, 1019 (2016)
Nyamunda BC, Chivhanga T, Guyo U, Chigondo F, J. Eng., 2019, Art. ID. 5656983 (2019).
Roy A, Bhattacharya J, Chem. Eng., 211-212, 493 (2012)
Ealias AM, Saravanakumar MP, Environ. Sci. Pollut. Res., 27, 2955 (2020)
George G, Saravanakumar MP, Environ. Sci. Pollut. Res., 25, 30236 (2018)
Zhang YJ, Ou JL, Duan ZK, Xing ZJ, Wang Y, Colloids Surf. A: Physicochem. Eng. Asp., 481, 108 (2015)
Islam MA, Angove MJ, Morton DW, Environ. Nanotechnol. Monit. Manag., 12, 100267 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로