Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 16, 2020
Accepted October 3, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Bio-oil production from fast pyrolysis of furniture processing resid
1Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913, Korea 2Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104, Korea 3Daekyung Esco, M-1903, 32, Songdowahak-ro, Yeonsu-gu, Incheon 21984, Korea
jkim21@khu.ac.kr
Korean Journal of Chemical Engineering, February 2021, 38(2), 306-315(10), 10.1007/s11814-020-0688-x
Download PDF
Abstract
The pyrolysis characteristic of furniture processing residue (FPR), which was analyzed by thermogravimetric analysis (TGA) under nitrogen atmosphere, mainly decomposed between 230 °C and 500 °C. The FPR was submitted to fast pyrolysis in a bubbling fluidized-bed reactor (BFR) for converting into bio-oil, bio-char. The product distribution and characteristics of bio-oil depend on the operating conditions (temperature, fluidizing flow rate, particle size of sample). The bio-oil yield showed the highest value (50.68 wt%) at the pyrolysis temperature of 450 °C with a biomass particle size of 1.0mm and a fluidization velocity of 2.0×Umf. The bio-oil had high selectivity for dioctyl phthalate, levoglucosan, and phenolic derivatives. The carbon number proportions in bio-oils of FPR were 32.74wt% for C5- C11 fraction, 47.60 wt% for C12-C18 fraction and 19.38 wt% of C25-C38 fraction, respectively. The gas product included CO, CO2, H2, and hydrocarbons (C1-C4), and the selectivity of CO2 was the highest. The high heating value (HHV) of gas products was between 4.60 and 12.90 MJ/m3. The bio-char shows high HHV (23.87 MJ/kg) and high C content (62.47wt%) that can be applied as a solid fuel.
References
Lee HW, Jeong HS, Ju YM, Lee SM, Korean J. Chem. Eng., 37(7), 1174 (2020)
Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831 (2012)
Morali U, Yavuzel N, Sensoz S, Bioresour. Technol., 221, 682 (2016)
Ly HV, Kim SS, Woo HC, Choi JH, Suh DJ, Kim J, Energy, 93, 1436 (2015)
Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493 (2020)
Azargohar R, Jacobson KL, Powell EE, Dalai AK, J. Anal. Appl. Pyrolysis, 104, 330 (2013)
Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Munir MAM, Liu R, J. Anal. Appl. Pyrolysis, 134, 281 (2018)
Kim SS, Shenoy A, Agblevor FA, Bioresour. Technol., 156, 297 (2014)
Ly HV, Lim DH, Sim JW, Kim SS, Kim J, Energy, 162, 564 (2018)
Ly HV, Kim SS, Choi JH, Woo HC, Kim J, Energy Conv. Manag., 122, 526 (2016)
Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
Carrasco JL, Gunukula S, Boateng AA, Mullen CA, DeSisto WJ, Wheeler MC, Fuel, 193, 477 (2017)
Papari S, Hawboldt K, Helleur R, Ind. Eng. Chem. Res., 56(8), 1920 (2017)
14.Solar J, de Marco I, Caballero BM, Lopez-Urionabarrenechea A, Rodriguez N, Agirre I, Adrados A, Biomass Bioenergy, 95, 416 (2016)
Garcia R, Pizarro C, Lavin AG, Bueno JL, Bioresour. Technol., 103(1), 249 (2012)
Ly HV, Choi JH, Woo HC, Kim SS, Kim J, Renew. Energy, 133, 11 (2019)
Kim SS, Agblevor FA, Bioresour. Technol., 16, 367 (2014)
Yuzawa T, Watanabe C, Freeman R, Tsuge S, Anal. Sci., 25, 1057 (2009)
Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT, Energy Fuels, 20(1), 388 (2006)
Heidari A, Stahl R, Younesi H, Rashidi A, Troeger N, Ghoreyshi AA, J. Ind. Eng. Chem., 20(4), 2594 (2014)
Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ, Fuel, 88(10), 1810 (2009)
Channiwala SA, Parikh PP, Fuel, 81(8), 1051 (2002)
Wang S, Luo Z, Pyrolysis of biomass (green alternative energy resource), de Gruyter Publication, China (2016).
Xue Y, Zhou S, Brown RC, Kelkar A, Bai XL, Fuel, 156, 40 (2015)
Papari S, Hawboldt K, Renew. Sust. Energ. Rev., 52, 1580 (2015)
Dhyani V, Bhaskar T, Renew. Energy, 129, part B, 695 (2018).
Li R, Zhong ZP, Jin BS, Zheng AJ, Bioresour. Technol., 119, 324 (2012)
Gomez-Hens A, Aguilar-Caballos M, Trends Analyt. Chem., 22, 847 (2003)
Szczepanska N, Rutkowska M, Owczarek K, Plotak-Wasylka J, Namiesnik J, Trends Analyt. Chem., 105, 173 (2018)
Chang GZ, Huang YQ, Xie JJ, Yang HK, Liu HC, Yin XL, Wu CZ, Energy Conv. Manag., 124, 587 (2016)
Heo HS, Park HJ, Park YK, Ryu C, Suh DJ, Suh YW, Yim JH, Kim SS, Bioresour. Technol., 101, S91 (2010)
Bridgwater VA, Advances in thermochemical biomass conversion, Springer Publication, Netherlands (1993).
Cui Y, Hou X, Chang J, Materials, 10, 668 (2017)
Zhang X, Yang W, Blasiak W, J. Anal. Appl. Pyrolysis, 96, 110 (2012)
Wang Y, Song H, Peng L, Zhang Q, Yao S, Biotechnol. Biotechnol. Equip., 28, 981 (2016)
Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831 (2012)
Morali U, Yavuzel N, Sensoz S, Bioresour. Technol., 221, 682 (2016)
Ly HV, Kim SS, Woo HC, Choi JH, Suh DJ, Kim J, Energy, 93, 1436 (2015)
Kim YM, Lee HW, Jang SH, Jeong JH, Ryu SM, Jung SC, Park YK, Korean J. Chem. Eng., 37(3), 493 (2020)
Azargohar R, Jacobson KL, Powell EE, Dalai AK, J. Anal. Appl. Pyrolysis, 104, 330 (2013)
Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Munir MAM, Liu R, J. Anal. Appl. Pyrolysis, 134, 281 (2018)
Kim SS, Shenoy A, Agblevor FA, Bioresour. Technol., 156, 297 (2014)
Ly HV, Lim DH, Sim JW, Kim SS, Kim J, Energy, 162, 564 (2018)
Ly HV, Kim SS, Choi JH, Woo HC, Kim J, Energy Conv. Manag., 122, 526 (2016)
Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
Carrasco JL, Gunukula S, Boateng AA, Mullen CA, DeSisto WJ, Wheeler MC, Fuel, 193, 477 (2017)
Papari S, Hawboldt K, Helleur R, Ind. Eng. Chem. Res., 56(8), 1920 (2017)
14.Solar J, de Marco I, Caballero BM, Lopez-Urionabarrenechea A, Rodriguez N, Agirre I, Adrados A, Biomass Bioenergy, 95, 416 (2016)
Garcia R, Pizarro C, Lavin AG, Bueno JL, Bioresour. Technol., 103(1), 249 (2012)
Ly HV, Choi JH, Woo HC, Kim SS, Kim J, Renew. Energy, 133, 11 (2019)
Kim SS, Agblevor FA, Bioresour. Technol., 16, 367 (2014)
Yuzawa T, Watanabe C, Freeman R, Tsuge S, Anal. Sci., 25, 1057 (2009)
Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT, Energy Fuels, 20(1), 388 (2006)
Heidari A, Stahl R, Younesi H, Rashidi A, Troeger N, Ghoreyshi AA, J. Ind. Eng. Chem., 20(4), 2594 (2014)
Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ, Fuel, 88(10), 1810 (2009)
Channiwala SA, Parikh PP, Fuel, 81(8), 1051 (2002)
Wang S, Luo Z, Pyrolysis of biomass (green alternative energy resource), de Gruyter Publication, China (2016).
Xue Y, Zhou S, Brown RC, Kelkar A, Bai XL, Fuel, 156, 40 (2015)
Papari S, Hawboldt K, Renew. Sust. Energ. Rev., 52, 1580 (2015)
Dhyani V, Bhaskar T, Renew. Energy, 129, part B, 695 (2018).
Li R, Zhong ZP, Jin BS, Zheng AJ, Bioresour. Technol., 119, 324 (2012)
Gomez-Hens A, Aguilar-Caballos M, Trends Analyt. Chem., 22, 847 (2003)
Szczepanska N, Rutkowska M, Owczarek K, Plotak-Wasylka J, Namiesnik J, Trends Analyt. Chem., 105, 173 (2018)
Chang GZ, Huang YQ, Xie JJ, Yang HK, Liu HC, Yin XL, Wu CZ, Energy Conv. Manag., 124, 587 (2016)
Heo HS, Park HJ, Park YK, Ryu C, Suh DJ, Suh YW, Yim JH, Kim SS, Bioresour. Technol., 101, S91 (2010)
Bridgwater VA, Advances in thermochemical biomass conversion, Springer Publication, Netherlands (1993).
Cui Y, Hou X, Chang J, Materials, 10, 668 (2017)
Zhang X, Yang W, Blasiak W, J. Anal. Appl. Pyrolysis, 96, 110 (2012)
Wang Y, Song H, Peng L, Zhang Q, Yao S, Biotechnol. Biotechnol. Equip., 28, 981 (2016)