ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 16, 2020
Accepted November 30, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Layer-by-layer of graphene oxide-chitosan assembly on PVA membrane surface for the pervaporation separation of water-isopropanol mixtures

Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 48547, Korea 1Center for Membranes, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
Korean Journal of Chemical Engineering, February 2021, 38(2), 411-421(11), 10.1007/s11814-020-0726-8
downloadDownload PDF

Abstract

A graphene oxide/chitosan polyelectrolyte layer was used to modify the surface of a polyvinyl alcohol/tetraethyl orthosilicate membrane by layer-by-layer interfacial complexation and, thus, improve the pervaporation characteristics. The interfacial complexation between the chitosan and graphene oxide was confirmed by Fourier-transform infrared and X-ray photoelectron spectroscopy; the changes in surface hydrophilicity after layer-by-layer modification were examined by contact angle measurements, and the morphology of the layer-by-layer membrane was elucidated by field-emission scanning electron microscopy analysis. The pervaporation performance of the modified membranes was evaluated by performing the separation of water-isopropanol (IPA) azeotropes under different operating conditions. In the pervaporation experiments, the best performance was obtained using a membrane with 15 chitosan-GO layers (denoted 15 L-L(CH-GO)). For this membrane, the flux increased from 13.6 to 76.4 g/m2h and the separation factor decreased from 56,720 to 4,001 as the feed temperature was varied from 30 to 60 °C for an 80 : 20 (w/w) IPA/water feed. The apparent permeation activation energies were calculated and that of IPA (122.8 kJ/mol) was greater than that of water (47.4 kJ/mol).

References

Das P, Ray SK, Kuila SB, Samanta HS, Singha NR, Sep. Purif. Technol., 81(2), 159 (2011)
Kursun F, J. Mol. Struct., 1201, 127170 (2020)
Chaudhari S, Kwon Y, Moon M, Shon M, Nam S, Park Y, J. Appl. Polym. Sci., 134, 45572 (2017)
Sawamura K, Furuhata T, Sekine Y, Kikuchi E, Subramanian B, Matsukata M, Appl. Mater. Interfaces, 7, 13728 (2015)
Dmitrenko ME, Penkova AV, Kuzminova AI, Morshed M, Larionov MI, Alem H, Zolotarev AA, Ermakov SS, Roizard D, Appl. Surf. Sci., 450, 527 (2018)
Bolto B, Hoang M, Xie Z, Chem. Eng. Process. Process Intensif., 50, 227 (2011)
Chapman PD, Oliveira T, Livingston AG, Li K, J. Membr. Sci., 318(1-2), 5 (2008)
Wijmans JG, Baker RW, J. Membr. Sci., 107(1-2), 1 (1995)
Ong Y, Shi G, Le N, Tang Y, Zuo J, Nunes S, Chung T, Prog. Polym. Sci., 57, 1 (2016)
Halakoo E, Feng X, Chem. Eng. Sci., 216, 115488 (2020)
Yang G, Xie Z, Doherty C, Cran M, Cran D, Ng D, Gray S, J. Membr. Sci., 603, 118005 (2020)
Sun H, Sun D, Shi X, Li B, Yue D, Xiao R, Ren P, Zhang J, Sep. Purif. Technol., 241, 116739 (2020)
Kursun F, Isıklan N, J. Ind. Eng. Chem., 41, 91 (2016)
Prasad CV, Yeriswamy B, Sudhakar H, Sudhakara P, Subha MCS, Song JI, Rao KC, J. Appl. Polym. Sci., 125(5), 3351 (2012)
Ghobadi N, Mohammadi T, Kasiri N, Kazemimoghadam M, J. Appl. Polym. Sci., 134, 44587 (2017)
Hilmioglu ND, Tulbentci S, Desalin. Water Treat., 48, 191 (2012)
Das P, Ray SK, Kuila SB, Samanta HS, Singha NR, Sep. Purif. Technol., 81(2), 159 (2011)
Ye LY, Liu QL, Zhang QG, Zhu AM, Zhou GB, J. Appl. Polym. Sci., 105(6), 3640 (2007)
Nemati M, Hosseini S, Shabanian M, J. Korean Chem. Eng., 34, 1813 (2017)
Hosseini S, Alibakhshi H, Jashni E, Parvizian F, Shen J, Taheri M, Ebrahimi M, Rafiei N, J. Hazard. Mater., 381, 12884 (2020)
Kim KH, Ingole PG, Lee HK, Int. J. Hydrog. Energy, 42(38), 24205 (2017)
Ingole PG, Baig MI, Choi W, An X, Choi WK, Jeon JD, Lee HK, Chem. Eng. Res. Des., 127, 45 (2017)
Choi O, Ingole PG, Lee HK, Sep. Purif. Technol., 211, 401 (2019)
Freger V, Korin E, Wisniak J, Korngold E, J. Membr. Sci., 164(1-2), 251 (2000)
Zhai Y, Zhang B, Fu X, Tong Z, Sep. Purif. Technol., 234, 116093 (2020)
Zhao Q, An QFF, Ji YL, Qian JW, Gao CJ, J. Membr. Sci., 379(1-2), 19 (2011)
Achari D, Rachipudi P, Naik S, Karuppannan R, Kariduraganavar M, J. Ind. Eng. Chem., 78, 383 (2019)
Shi GM, Zuo J, Tang SH, Wei S, Chung TS, Sep. Purif. Technol., 140, 13 (2015)
Kononova S, Volodko A, Petrova V, Kruchinina E, Baklagina Y, Chusovitin E, Skorik Y, Carbohydr. Polym., 181, 86 (2018)
Hu CL, Li B, Guo RL, Wu H, Jiang ZY, Sep. Purif. Technol., 55(3), 327 (2007)
William S, Hummers J, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF, J. Membr. Sci., 577, 104 (2019)
Chaudhari S, Kwon YS, Shon MY, Nam SE, Park YI, J. Ind. Eng. Chem., 81, 185 (2020)
Zhang Z, Hu R, Fan G, Li G, Sens. Actuators B-Chem., 243, 721 (2017)
Sumathra M, Sadasivni K, Kumar S, Rajan M, ACS Omega, 3, 14620 (2018)
Jiang Y, Gong J, Zeng G, Ou X, Chang Y, Deng C, Int. J. Biol. Macromol., 82, 486 (2016)
Yan T, Zhang H, Huang D, Feng S, Fujita M, Gao X, Nanomaterials, 7, 59 (2017)
Bryaskova R, Georgieva N, Andreeva T, Tzoneva R, Surf. Coat. Technol., 235, 186 (2013)
Pingan H, Mengjun J, Yanyan Z, Ling H, RSC Adv., 7, 2450 (2017)
Wach A, Drozdek M, Dudek B, Szneler E, Kustrowski P, Catal. Commun., 64, 52 (2015)
Zuo P, Feng H, Xu Z, Zhang L, Zhang Y, Xia W, Zhang W, Chem. Cent. J., 7, 39 (2013)
Xing Z, Ju Z, Zhao Y, Zhu J, Zhu Y, Qiang Y, Qian Y, Nat. Sci. Rep., 6, 26146 (2016)
Liu Z, Zhao Z, Wang Y, Dou S, Yan D, Liu D, Xia Z, Wang S, Adv. Mater., 29, 160620 (2017)
Schnucklake M, Eifert L, Schneider J, Zeis R, Roth C, Beilstein J. Nanotechnol., 10, 1131 (2019)
Shao P, Huang RYM, J. Membr. Sci., 287(2), 162 (2007)
Tieke B, Ackern F, Krasemann L, Toutianoush A, Euro. Phys. J. E, 5, 29 (2001)
Cao KT, Jiang ZY, Zhao J, Zhao CH, Gao CY, Pan FS, Wang BY, Cao XZ, Yang J, J. Membr. Sci., 469, 272 (2014)
Wang Y, Goh SH, Chung TS, Na P, J. Membr. Sci., 326(1), 222 (2009)
Kim K, Ingole PG, Kim J, Lee H, Chem. Eng. J., 233, 242 (2013)
Ingole PG, Ingole NP, Korean J. Chem. Eng., 31(12), 2109 (2014)
Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K, J. Mater. Chem. A, 3, 5140 (2015)
Han YJ, Wang KH, Lai JY, Liu YL, J. Membr. Sci., 463, 17 (2014)
Mosleh S, Khosravi T, Bakhtiari O, Mohammadi T, Chem. Eng. Res. Des., 90(3A), 433 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로