ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 15, 2020
Accepted October 14, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modeling of autocatalytic degradation of polymer microparticles with various morphologies based on analytical solutions of reaction-diffusion equations

Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, 237 Sangdaehak-ro, Siheung-si, Gyeonggi-do 15073, Korea
Korean Journal of Chemical Engineering, February 2021, 38(2), 422-441(20), 10.1007/s11814-020-0696-x
downloadDownload PDF

Abstract

Analytical solutions of transient concentration of degraded components inside cylindrical and slab-type PLGA particles immersed in infinite medium were derived by solving reaction-diffusion equations of autocatalytic reaction using eigenfunction expansion method. The resulting average concentrations were compared with the modeling results of spherical PLGA particles by Versypt and her colleagues to study the effect of particle morphology on the autocatalytic reaction. Mass transfer resistance inside and outside of the particles was also considered using Biot number, and its effects on the concentration inside particles with various morphologies were also studied by solving reaction-diffusion equation. To predict transient concentration in surrounding medium, coupled differential equations were solved for the three shapes of PLGA particles by assuming finite volume of the decomposition system. Mathematical solutions were obtained by Laplace transform, and the results were compared for the PLGA particles with different shapes depending on Thiele modulus and particle volume fraction.

References

Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, Rehman IU, Int. Mater. Rev., 64(2), 91 (2018)
Rebagay G, Bangalore S, Curr. Cardiovasc. Risk Rep., 13(22), 2 (2019)
Kallinteri P, Higgins S, Hutcheon GA, St Pourcain CB, Garnett MC, Biomacromolecules, 6(4), 1885 (2005)
Anderson JM, Shive MS, Adv. Drug Deliv. Rev., 28, 5 (1997)
Astete CE, Sabliov CM, J. Biomater. Sci. Polym. Ed., 17(3), 247 (2006)
Lopes MS, Jardini AL, Filho RM, Chem. Eng. Trans., 38, 331 (2014)
Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M, Acta Biomater., 73, 38 (2018)
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V, J. Control. Release, 161(2), 505 (2012)
Yu CC, Chen YW, Yeh PY, Hsiao YS, Lin WT, Kuo CW, Chueh DY, You YW, Shyue JJ, Chang YC, Chen P, J. Nanobiotechnol., 17(1), 31 (2019)
Liu X, Baldursdottir SG, Aho J, Qu H, Christensen LP, Rantanen J, Yang M, Pharm. Res., 34, 738 (2017)
van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE, Polymer, 45(20), 6779 (2004)
Blasi P, J. Pharm. Investig., 49, 337 (2019)
Versypt ANF, Arendt PD, Pack DW, Braatz RD, Plos One, 10(8), e01355 (2015)
Vey E, Rodger C, Booth J, Claybourn M, Miller AF, Saiani A, Polym. Degrad. Stabil., 96, 1882e1 (2011)
Kim DH, Lee J, Korean J. Chem. Eng., 29(1), 42 (2012)
Bessonov N, Bocharov G, Meyerhans A, Popov V, Volpert V, Mathematics, 8, 117 (2020)
Cho YS, Korean Chem. Eng. Res., 57(5), 652 (2019)
Cho W, Lee J, Korean J. Chem. Eng., 30(3), 580 (2013)
Mohammad AK, Reineke JJ, Mol. Pharm., 10(6), 2183 (2013)
Chereddy KK, Payen VL, Preat V, J. Control. Release, 289, 10 (2018)
Rice RG, Do DD, Applied mathematics and modeling for chemical engineers, 1st Ed., John Wiley & Sons, New York (1995).
Amoyav B, Benny O, Polymers, 11, 419 (2019)
Ahi ZB, Renkler NZ, Seker MG, Tuzlakoglu K, Int. J. Biomater., 2019, 193247 (2019)
Giustina GD, Gandin A, Brigo L, Panciera T, Giulitti S, Sgarbossa P, D'Alessandro D, Trombi L, Danti S, Brusatin G, Mater. Des., 165, 107566 (2019)
Lannutti J, Reneker D, Ma T, Tomasko D, Farson D, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 27(3), 504 (2007)
Ryu T, Kim SE, Kim JH, Moon SK, Choi SW, J. Bioact. Compat. Polym., 29(5), 445 (2014)
Xue JJ, Ma SS, Zhou YM, Zhang ZW, He M, ACS Appl. Mater. Interfaces, 7, 9630 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로