ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 6, 2020
Accepted November 24, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Nanocomposites of Fe2O3@rGO for adsorptive removal of arsanilic acid from aqueous solution

Department of Chemistry, Shenyang Medical College, Shenyang 110034, China 1College of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China, Korea
Korean Journal of Chemical Engineering, March 2021, 38(3), 498-504(7), 10.1007/s11814-020-0722-z
downloadDownload PDF

Abstract

Arsanilic acid (ASA), an organic-arsenic veterinary drug used widely, has greatly attracted attention due to its potential threats. We report the nanocomposites of the α-Fe2O3 nanoparticles growth on reduced graphene oxide (rGO) by a one-pot method. The α-Fe2O3 nanoparticles are densely covered on the surface of rGO according to the observations of transmission and scanning electron microscope. The adsorptive capacity (357.4±11.2mg g-1) of the Fe2O3@rGO nanocomposites for ASA, which was more than the sum of adsorptive capacities of the pure α-Fe2O3 nanoparticles and rGO, revealed a remarkable enhancement due to the synergetic effect of multiple interactions and the good dispersion of α-Fe2O3 nanoparticles with more active binding sites in the Fe2O3@rGO nanocomposites. The adsorption equilibrium of ASA onto the Fe2O3@rGO nanocomposites was achieved for 60 min, and the adsorption of ASA was dependent of pH and temperature, and independent of the concentration of humic acid ranging from 0 to 20 mg L-1. After five cycles of adsorption-desorption, the adsorptive amounts of ASA by the regenerative sorbent still retained 85% of adsorptive amount by the fresh sorbents. The adsorption process of ASA can be described by the Langmuir and the pseudo-second-order equations and is exothermic and spontaneous according to thermodynamic analysis.

References

Overby LR, Lilian S, Toxicol. Appl. Pharmacol., 7, 850 (1965)
Rutherford DW, Bednar AJ, Garbarino JR, Needham R, Staver KW, Wershaw RL, Environ. Sci. Technol., 37, 1515 (2003)
Garbarino JR, Bednar AJ, Rutherford DW, Beyer RS, Wershaw RL, Environ. Sci. Technol., 37, 1509 (2003)
Brown BL, Slaughter AD, Schreiber M, Appl. Geochem., 20, 123 (2005)
Xu J, Shen XY, Wang DL, Zhao CX, Liu ZZ, Pozdnyakov IP, Wu F, Xia J, Chem. Eng. J., 336, 334 (2018)
Jung BK, Jun JW, Hasan Z, Jhung SH, Chem. Eng. J., 267, 9 (2015)
Chen S, Deng J, Ye C, Xu C, Huai L, Li J, Li X, Sci. Total Environ., 742, 140587 (2020)
Joshi TP, Zhang G, Koju R, Qi Z, Liu R, Liu H, Qu J, Sci. Total Environ., 601-602, 713 (2017)
Liu W, Ai ZH, Dahlgren RA, Zhang LZ, Wang XD, Chem. Eng. J., 330, 1232 (2017)
Fan W, Zhang X, Zhang Y, Wang P, Zhang L, Yin Z, Yao J, Xiang W, J. Mol. Recognit., 31, e2625 (2018)
Wang YJ, Ji F, Wang W, Yuan SJ, Hu ZH, Desalin. Water Treatm., 57, 20520 (2016)
Poon L, Younus S, Wilson LD, J. Colloid Interface Sci., 420, 136 (2014)
Hu JL, Tong ZL, Hu ZH, Chen GW, Chen TH, J. Colloid Interface Sci., 377, 355 (2012)
Kong D, Wilson LD, Carbohydr. Polym., 169, 282 (2017)
Hu J, Tong Z, Chen G, Zhang X, Hu Z, Int. J. Environ. Sci. Technol., 11, 785 (2014)
Tian C, Zhao J, Zhang J, Chu S, Dang Z, Lin Z, Xing B, Environ. Sci.: Nano, 4, 2134 (2017)
You N, Wang XF, Li JY, Fan HT, Shen H, Zhang Q, J. Ind. Eng. Chem., 70, 346 (2019)
Saleh TA, Al-Shalalfeh MM, Al-Saadi AA, Sens. Actuators B-Chem., 254, 1110 (2018)
Wang LY, Wang SW, Chen WR, Chemosphere, 152, 423 (2016)
Tang WS, Li Q, Gao SA, Shang JK, J. Hazard. Mater., 192(1), 131 (2011)
Zhao X, Lv L, Pan BC, Zhang WM, Zhang SJ, Zhang QX, Chem. Eng. J., 170(2-3), 381 (2011)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
You N, Chen Y, Zhang QX, Zhang Y, Meng Z, Fan HT, Sci. Total Environ., 735, 139553 (2020)
Zhang FF, Wang W, Yuan SJ, Hu ZH, J. Hazard. Mater., 279, 562 (2014)
Sun M, Liu H, Liu Y, Qu J, Li J, Nanoscale, 7, 1250 (2015)
Urbas K, Aleksandrzak M, Jedrzejczak M, Jedrzejczak M, Rakoczy R, Chen X, Mijowska E, Nanoscale Res. Lett., 9, 656 (2014)
Zhu CZ, Guo SJ, Fang YX, Dong SJ, ACS Nano, 4, 2429 (2010)
Wu C, Zhang H, Wu YX, Zhuang QC, Tian LL, Zhang XX, Electrochim. Acta, 134, 18 (2014)
Li B, Zhu XY, Hu KL, Li YS, Feng JF, Shi JL, Gu JL, J. Hazard. Mater., 302, 57 (2016)
Salame II, Bandosz TJ, J. Colloid Interface Sci., 240(1), 252 (2001)
Deng J, Chen YJ, Lu YA, Ma XY, Feng SF, Gao N, Li J, Environ. Sci. Pollut. Res., 24, 14396 (2017)
Jun JW, Tong M, Jung BK, Hasan Z, Zhong C, Jhung SH, Chem. Eur. J., 21, 347 (2015)
Adamescu A, Hamilton IP, Al-Abadleh HA, J. Phys. Chem. A, 118(30), 5667 (2014)
Sun TY, Zhao ZW, Liang ZJ, Liu J, Shi WX, Cui FY, Chem. Eng. J., 334, 1527 (2018)
Mitchell W, Goldberg S, Al-Abadleh HA, J. Colloid Interface Sci., 358(2), 534 (2011)
Chen WR, Huang CH, J. Hazard. Mater., 227-228, 378 (2012)
Peng Y, Wei W, Zhou H, Ge S, Li S, Wang G, Zhang Y, J. Dispersion Sci. Technol., 37, 1590 (2016)
Joshi TP, Zhang G, Cheng H, Liu R, Liu H, Qu J, Water Res., 116, 126 (2017)
Fan HT, Wu JB, Fan XL, Zhang DS, Su ZJ, Yan F, Sun T, Chem. Eng. J., 198-199, 355 (2012)
Fan HT, Sun XT, Zhang ZG, Li WX, J. Chem. Eng. Data, 59(6), 2106 (2014)
Javadian H, Vahedian P, Toosi M, Appl. Surf. Sci., 284, 13 (2013)
Fan HT, Tang Q, Sun Y, Zhang ZG, Li WX, Chem. Eng. J., 258, 146 (2014)
Fan HT, Sun ST, Li WX, J. Sol-Gel Sci. Technol., 72, 144 (2014)
Liu Y, J. Chem. Eng. Data, 54(7), 1981 (2009)
Fan HT, Sun W, Jiang B, Wang QJ, Li DW, Huang CC, Wang KJ, Zhang ZG, Li WX, Chem. Eng. J., 286, 128 (2016)
Fan HT, Fan XL, Li J, Guo MM, Zhang DS, Yan F, Sun T, Ind. Eng. Chem. Res., 51(14), 5216 (2012)
Fan HT, Sun Y, Tang Q, Li WL, Sun T, J. Taiwan Inst. Chem. Eng., 45, 2640 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로