Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 11, 2020
Accepted January 26, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Bubble dynamics and deformation of free liquid surface in aerated liquid storage tanks
Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
Korean Journal of Chemical Engineering, April 2021, 38(4), 716-735(20), 10.1007/s11814-021-0747-y
Download PDF
Abstract
OpenFOAM was utilized for analyzing bubble behavior and deformation of free liquid surface due to bubble formation and bursting in a rectangular container. Influence of three system parameters, orifice diameter, number of orifices and spacing between orifices, on various bubble dynamics and deformation of gas-liquid interface is presented. The study also incorporates information on bubble formation, bubbling frequency, and orientation of bubbles. Considering different orifice spacing, bubbling synchronicity is also reported. Details regarding interaction of wakes during bubble coalescence for single, double and triple inlet orifices are presented. The deformation of free liquid surface due to bubble formation and bursting is quantified using a new parameter called deformation index (DL *). The analyses indicate that the frequency of bubble detachment is augmented with increase in orifice diameter and number of orifices. However, bubble detachment frequency is reduced when orifice spacing increased. Orientation of detached bubbles keeps on changing for larger orifice spacing. Results show that variations of these geometric parameters have substantial influence on free liquid surface deformation due to bubble bursting and other bubble behavior. Using results of these studies, one can develop a bubble-generating device for optimal performance.
Keywords
References
Deen NG, Solberg T, Hjertager BH, CHISA, Int. Con. Chem. Pro. Eng., Praha, Czech Republic, August 27-31, 1-18 (2000).
Ma D, Liu MY, Zu YG, Tang C, Chem. Eng. Sci., 72, 61 (2012)
Bin L, Jun C, Fengchao L, Xiulan H, J. Ther. Sci., 22, 352 (2013)
Zahedi P, Saleh R, Moreno-Atanasio R, Yousefi K, Korean J. Chem. Eng., 31(8), 1349 (2014)
Hirt CW, Nichols BD, J. Comput. Phys., 39, 201 (1981)
Delnoij E, Kuipers JA, Vanswaaij WP, Chem. Eng. Sci., 52(21-22), 3623 (1997)
Delaure YMC, Chan VSS, Murray DB, Exp. Therm. Fluid Sci., 27, 911 (2003)
Boyce CM, Penn A, Lehnert M, Pruessmann KP, Muller CR, Chem. Eng. Sci., 208, 1 (2019)
Wang H, Verdugo AS, Sun J, Wang J, Yang Y, Jimenez FH, Chem. Eng. Sci., 211, 1 (2020)
Wahhab HAA, Aziz ARA, Kayiem HHA, Nasif MS, J. Appl. Fluid Mech., 10, 1649 (2017)
Behkish A, Men ZW, Inga JR, Morsi BI, Chem. Eng. Sci., 57(16), 3307 (2002)
Andrzej KB, Machniewski PM, Rudniak L, Poli. Sci. Commi., 8, 17 (2004)
Alkhalidi AAT, Amano RS, Water Environ. J., 29, 105 (2014)
Han YY, Koshizuka S, Oka Y, Nucl. Sci. Eng., 133, 192 (1999)
Mehta B, Khandekar S, 11th Int. Con. Quan. Infr. Ther., QIRT, 11-14 June, Naples Italy (2012).
Islam MT, Ganesan P, Sahu JN, Hamad F, Ther. Sci., 19, 2127 (2015)
Wang Z, Chen R, Zhu X, Liao Q, Ye D, Zhang B, He X, Jiao L, Appl. Therm. Eng., 131, 132 (2018)
King L, Sadhal SS, Heat Mass Transfer., 50, 373 (2014)
Verma A, Babu R, Das MK, Lect. Notes. Mech. Eng., 1059 (2017).
Guan H, Wang JC, Wei ZJ, Wu CJ, Appl. Math. Mech., 40, 1181 (2019)
Prasad VK, Chatterjee D, Singh SP, SADHANA-ACAD P ENGS, 43, 1 (2018).
Raj S, Jayakumar JS, Ind. Soc. Heat Mass Tra., 2089 (2017).
Shiyi C, Doolen GD, Ann. Rev. Flu. Mech., 30, 329 (1998)
Gupta A, Kumar R, Int. J. Heat Mass Transfer., 51, 5192 (2008)
Rana BK, Paikara LS, Das AK, Das PK, Lect. Notes. Mech. Eng., 957 (2017).
Raj S, Jayakumar JS, Int. Con. Comp. Meth. Therm. Prob., 612 (2018).
Raj S, Jayakumar JS, Lec. Notes. Mech. Eng., 769 (2019).
Brackbill JU, Kothe DB, Zemach C, J. Comput. Phys., 100, 335 (1992)
van Leer B, J. Comput. Phys., 32, 101 (1979)
Ashgriz N, Poo JY, J. Comput. Phys., 93, 449 (1991)
Youngs DL, Numer. Methods Fluid Dyn., 273 (1982)
Li XN, Liu MY, Dong TT, Yao D, Ma YL, Chem. Eng. Res. Des., 155, 108 (2020)
Greenshields CJ, OpenFOAM User Guide, Version 6., (2018) (a).https://cfd.direct/openfoam/user-guide/.
Greenshields CJ, OpenFOAM Programmer’s Guide, Version 6., (2018) (b). https://pingpong.chalmers.se/public/pp/public_courses/course09769/published/1558505655816/resourceId/5227641/content/UploadedResources/ProgrammersGuide.pdf.
Versteeg HK, Malalasekera W, An introduction to computational fluid dynamics, the finite volume method, Second Ed., Pearson Education Limited, England (2007).
Klostermann J, Schaake K, Schwarze R, Int. J. Num. Meth., 71, 1 (2012)
Courant R, Friedrichs K, Lewy H, Mathe. Anna., 100, 32 (1928)
Krishna R, Van Baten JM, Chem. Eng. Res. Des., 79(3), 283 (2001)
Lin JN, Banerji SK, Yasuda H, Am. Chem. Soc, 10, 936 (1994)
Xie SY, Tan RBH, Chem. Eng. Sci., 58(20), 4639 (2003)
Jia F, Li ZYK, Pui DYH, Tasi CJ, Korean J. Chem. Eng., 37(3), 423 (2020)
Ma D, Liu MY, Zu YG, Tang C, Chem. Eng. Sci., 72, 61 (2012)
Bin L, Jun C, Fengchao L, Xiulan H, J. Ther. Sci., 22, 352 (2013)
Zahedi P, Saleh R, Moreno-Atanasio R, Yousefi K, Korean J. Chem. Eng., 31(8), 1349 (2014)
Hirt CW, Nichols BD, J. Comput. Phys., 39, 201 (1981)
Delnoij E, Kuipers JA, Vanswaaij WP, Chem. Eng. Sci., 52(21-22), 3623 (1997)
Delaure YMC, Chan VSS, Murray DB, Exp. Therm. Fluid Sci., 27, 911 (2003)
Boyce CM, Penn A, Lehnert M, Pruessmann KP, Muller CR, Chem. Eng. Sci., 208, 1 (2019)
Wang H, Verdugo AS, Sun J, Wang J, Yang Y, Jimenez FH, Chem. Eng. Sci., 211, 1 (2020)
Wahhab HAA, Aziz ARA, Kayiem HHA, Nasif MS, J. Appl. Fluid Mech., 10, 1649 (2017)
Behkish A, Men ZW, Inga JR, Morsi BI, Chem. Eng. Sci., 57(16), 3307 (2002)
Andrzej KB, Machniewski PM, Rudniak L, Poli. Sci. Commi., 8, 17 (2004)
Alkhalidi AAT, Amano RS, Water Environ. J., 29, 105 (2014)
Han YY, Koshizuka S, Oka Y, Nucl. Sci. Eng., 133, 192 (1999)
Mehta B, Khandekar S, 11th Int. Con. Quan. Infr. Ther., QIRT, 11-14 June, Naples Italy (2012).
Islam MT, Ganesan P, Sahu JN, Hamad F, Ther. Sci., 19, 2127 (2015)
Wang Z, Chen R, Zhu X, Liao Q, Ye D, Zhang B, He X, Jiao L, Appl. Therm. Eng., 131, 132 (2018)
King L, Sadhal SS, Heat Mass Transfer., 50, 373 (2014)
Verma A, Babu R, Das MK, Lect. Notes. Mech. Eng., 1059 (2017).
Guan H, Wang JC, Wei ZJ, Wu CJ, Appl. Math. Mech., 40, 1181 (2019)
Prasad VK, Chatterjee D, Singh SP, SADHANA-ACAD P ENGS, 43, 1 (2018).
Raj S, Jayakumar JS, Ind. Soc. Heat Mass Tra., 2089 (2017).
Shiyi C, Doolen GD, Ann. Rev. Flu. Mech., 30, 329 (1998)
Gupta A, Kumar R, Int. J. Heat Mass Transfer., 51, 5192 (2008)
Rana BK, Paikara LS, Das AK, Das PK, Lect. Notes. Mech. Eng., 957 (2017).
Raj S, Jayakumar JS, Int. Con. Comp. Meth. Therm. Prob., 612 (2018).
Raj S, Jayakumar JS, Lec. Notes. Mech. Eng., 769 (2019).
Brackbill JU, Kothe DB, Zemach C, J. Comput. Phys., 100, 335 (1992)
van Leer B, J. Comput. Phys., 32, 101 (1979)
Ashgriz N, Poo JY, J. Comput. Phys., 93, 449 (1991)
Youngs DL, Numer. Methods Fluid Dyn., 273 (1982)
Li XN, Liu MY, Dong TT, Yao D, Ma YL, Chem. Eng. Res. Des., 155, 108 (2020)
Greenshields CJ, OpenFOAM User Guide, Version 6., (2018) (a).https://cfd.direct/openfoam/user-guide/.
Greenshields CJ, OpenFOAM Programmer’s Guide, Version 6., (2018) (b). https://pingpong.chalmers.se/public/pp/public_courses/course09769/published/1558505655816/resourceId/5227641/content/UploadedResources/ProgrammersGuide.pdf.
Versteeg HK, Malalasekera W, An introduction to computational fluid dynamics, the finite volume method, Second Ed., Pearson Education Limited, England (2007).
Klostermann J, Schaake K, Schwarze R, Int. J. Num. Meth., 71, 1 (2012)
Courant R, Friedrichs K, Lewy H, Mathe. Anna., 100, 32 (1928)
Krishna R, Van Baten JM, Chem. Eng. Res. Des., 79(3), 283 (2001)
Lin JN, Banerji SK, Yasuda H, Am. Chem. Soc, 10, 936 (1994)
Xie SY, Tan RBH, Chem. Eng. Sci., 58(20), 4639 (2003)
Jia F, Li ZYK, Pui DYH, Tasi CJ, Korean J. Chem. Eng., 37(3), 423 (2020)