ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 28, 2020
Accepted October 3, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Selective hydrogenation of benzene over Ru supported on surface modified TiO2

College of Chemical Engineering, National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
Korean Journal of Chemical Engineering, April 2021, 38(4), 736-746(11), 10.1007/s11814-020-0689-9
downloadDownload PDF

Abstract

A series of catalysts with ruthenium nanoparticles (NPs) loaded on the binary oxide TS (TiO2-SiO2) support were prepared by facile sol-gel method for benzene selective hydrogenation. Different mole ratios of Ti/Si were investigated. The catalytic structure, composition, hydrophilicity, electronic state and acidity were characterized. The results indicate that the acidity of the samples increases gradually with the increase of the SiO2 amount. The dispersion of ruthenium nanoparticles was improved on binary oxide support compared with TiO2 and an obvious Ru size effect appeared with the increase of Ti/Si molar ratio. It was also found that the hydrophilicity of the supports could be efficiently improved by introducing a small amount of SiO2 to TiO2, which may be due to the large amount of surface hydroxyl groups on the binary oxide samples after SiO2 introduction. This result was consistent with the increasing trend of cyclohexene yield, indicating that the surface hydroxyl groups play a significant role in the motivation of cyclohexene desorption. Ru/TS (7 : 1) showed the best catalytic performance of 38.2% yield to cyclohexene with the highest initial selectivity to cyclohexene (S0) of 87.3%. The catalytic stability experiments showed that the yield of cyclohexene could maintain at 30% after five cycles.

References

Melgo MS, Lindner A, Schuchardt U, Appl. Catal. A: Gen., 273(1-2), 217 (2004)
Sato K, Aoki M, Noyori R, Science, 281(5383), 1646 (1998)
Abu Bakar NHH, Bettahar MM, Abu Bakar M, Monteverdi S, Ismail J, J. Mol. Catal. A-Chem., 333(1-2), 11 (2010)
Li YH, Zhu LH, Yan KQ, Zheng JB, Chen BH, Wang WJ, Chem. Eng. J., 226, 166 (2013)
Wang XB, Zhang XF, Liu HO, Qiu JS, Han W, Yeung KL, Catal. Today, 193(1), 151 (2012)
Zhang T, Zhang XF, Yan XJ, Kong LY, Zhang GC, Liu HO, Qiu JS, Yeung KL, Chem. Eng. J., 228, 398 (2013)
Foppa L, Dupont J, Chem. Soc. Rev., 44, 1886 (2015)
Schwab F, Lucas M, Claus P, Green Chem., 15, 646 (2013)
Schwab F, Lucas M, Claus P, Angew. Chem.-Int. Edit., 50, 10453 (2011)
Fan C, Zhu YA, Zhou XG, Liu ZP, Catal. Today, 160(1), 234 (2011)
Liu Z, Dai WL, Liu B, Deng JF, J. Catal., 187(1), 253 (1999)
Rao D, Xue X, Cui G, He S, Xu M, Bing W, Shi S, Wei M, Catal. Sci. Technol., 8, 236 (2018)
Xue X, Liu J, Rao D, Xu S, Bing W, Wang B, He S, Wei M, Catal. Sci. Technol., 7, 650 (2017)
Yu XL, Li Y, Xin SM, Yuan PQ, Yuan WK, Ind. Eng. Chem. Res., 57(6), 1961 (2018)
Liu SC, Liu ZY, Wang Z, Wu YM, Yuan P, Chem. Eng. J., 139(1), 157 (2008)
Jiang L, Zhou GB, J. Catal., 382, 97 (2020)
Jiang L, Dong YL, Zhou GB, Li R, He DP, Ind. Eng. Chem. Res., 59(3), 1083 (2020)
Zhou GB, Jiang L, He DP, J. Catal., 369, 352 (2019)
Zhou GB, Jiang L, He DP, Appl. Catal. A: Gen., 575, 65 (2019)
Zhou GB, Jiang L, Dong YL, Li R, He DP, Appl. Surf. Sci., 486, 187 (2019)
Wu T, Zhang P, Jiang T, Yang D, Han B, Sci. China Chem., 58, 93 (2015)
Zhou GB, Pei Y, Jiang Z, Fan KN, Qiao MH, Sun B, Zong BN, J. Catal., 311, 393 (2014)
Liao HG, Ouyang DH, Zhang J, Xiao YJ, Liu PL, Hao F, You KY, Luo H, Chem. Eng. J., 243, 207 (2014)
Wang JQ, Wang YZ, Zhe SH, Qiao MH, Li HX, Fan KN, Appl. Catal. A: Gen., 272(1-2), 29 (2004)
Milone C, Neri G, Donato A, Musolino MG, J. Catal., 159(2), 253 (1996)
Fan G, Jiang W, Wang J, Li R, Chen H, Li X, Catal. Commun., 10, 98 (2008)
Wang JQ, Guo PJ, Yan SR, Qiao MH, Li HX, Fan KN, J. Mol. Catal. A-Chem., 222(1-2), 229 (2004)
Zhang P, Wu T, Jiang T, Wang W, Liu H, Fan H, Zhang Z, Han B, Green Chem., 15, 152 (2013)
Hronec M, Cvengrosova Z, Kralik M, Palma G, Corain B, J. Mol. Catal. A-Chem., 105, 25 (1996)
Sun H, Guo W, Zhou X, Chen Z, Liu Z, Liu S, Chin. J. Catal., 32, 1 (2011)
Ronchin L, Toniolo L, React. Kinet. Catal. Lett., 78(2), 281 (2003)
Struijk J, D’Angremond M, Regt W, Scholten J, Appl. Catal. A: Gen., 83, 263 (1992)
Sun HJ, Wang HX, Jiang HB, Li SH, Liu SC, Liu ZY, Yuan XM, Yang KJ, Appl. Catal. A: Gen., 450, 160 (2013)
Zhou G, Tan X, Pei Y, Fan K, Qiao M, Sun B, Zong B, ChemCatChem, 5, 2425 (2013)
Xie SH, Qiao MH, Li HX, Wang WJ, Deng JF, Appl. Catal. A: Gen., 176(1), 129 (1999)
Struijk J, Moene R, Kamp T, Scholten J, Appl. Catal. A: Gen., 89, 77 (1992)
Huang CW, Liao CH, Wu JCS, Korean J. Chem. Eng., 37(8), 1352 (2020)
Eskandarian MR, Rasoulifard MH, Fazli M, Ghalamchi L, Choi H, Korean J. Chem. Eng., 36(6), 965 (2019)
Jing HX, Huang J, Li N, Li LX, Zhang J, Korean J. Chem. Eng., 36(4), 605 (2019)
Zhang M, Lei E, Zhang R, Liu Z, Surf. Interface, 16, 194 (2019)
Wongkaew A, Soontornkallapaki C, Amhae N, Lamai W, Adv. Mater. Res., 1131, 237 (2015)
Yu J, Zhao X, Yu J, Zhong G, Han J, Zhao Q, J. Mater. Sci. Lett., 20, 1745 (2011)
Bedilo A, Shuvarakova E, Volodin A, Ceram. Int., 45, 3547 (2019)
Periyat P, Baiju KV, Mukundan P, Pillai PK, Warder KGK, Appl. Catal. A: Gen., 349(1-2), 13 (2008)
Hu SC, Chen YW, Ind. Eng. Chem. Res., 36(12), 5153 (1997)
Zhou G, Wang H, Tian J, Pei Y, Fan K, Qiao M, Sun B, Zong B, ChemCatChem, 10, 1184 (2018)
Permpoon S, Berthome G, Baroux B, Joud JC, Langlet M, J. Mater. Sci., 41(22), 7650 (2006)
Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthome G, Joud JC, Langlet M, Appl. Surf. Sci., 254(5), 1405 (2007)
Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthome G, Joud J, Langlet M, Surf. Sci., 602, 3364 (2008)
Joud JC, Houmard M, Berthome G, Appl. Surf. Sci., 287, 37 (2013)
Ardeshiri F, Akbari A, Peyravi M, Jahanshahi M, Korean J. Chem. Eng., 36(2), 255 (2019)
Kim TW, Kim CS, Jeong HR, Shin CH, Suh YW, Korean J. Chem. Eng., 37(8), 1427 (2020)
Zhang Y, Jiang W, Ren Y, Wang B, Liu Y, Hua Q, Tang J, Korean J. Chem. Eng., 37(3), 536 (2020)
Davis R, Liu Z, Chem. Mater., 9, 2311 (1997)
Shao P, Mauritz K, Moore R, Chem. Mater., 7, 192 (1995)
Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L, Colloids Surf. A: Physicochem. Eng. Asp., 190, 261 (2001)
Zhou GB, Dong YL, He DP, Appl. Surf. Sci., 456, 1004 (2018)
Jacobs PA, Heylen CF, J. Catal., 34, 267 (1974)
Pieta IS, Ishaq M, Wells RPK, Anderson JA, Appl. Catal. A: Gen., 390(1-2), 127 (2010)
Zhang H, Banfield J, J. Mater. Chem., 8, 2073 (1998)
Lu MH, Sun Y, Zhang P, Zhu J, Li MS, Shan YH, Shen JY, Song CS, Ind. Eng. Chem. Res., 58(4), 1513 (2019)
Campbell PS, Santini CC, Bayard F, Chauvin Y, Colliere V, Podgorsek A, Gomes MFC, Sa J, J. Catal., 275(1), 99 (2010)
Chenakin SP, Melaet G, Szukiewicz R, Kruse N, J. Catal., 312, 1 (2014)
Ullah S, Ferreira-Neto EP, Pasa AA, Alcantara CCJ, Acuna JJS, Bilmes SA, Ricci MLM, Landers R, Fermino TZ, Rodrigues UP, Appl. Catal. B: Environ., 179, 333 (2015)
Zhou G, Dong Y, Jiang L, He D, Yang Y, Zhou X, Catal. Sci. Technol., 8, 1435 (2018)
Sun H, Chen Z, Li C, Chen L, Li Y, Peng Z, Liu Z, Liu S, Catalysts, 8, 172 (2018)
Odenbrand C, Lundin S, J. Chem. Technol. Biotechnol., 30, 677 (1980)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로