Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 25, 2020
Accepted December 23, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of chloride and other anions on electrochemical chlorine evolution over self-doped TiO2 nanotube array
1School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea 2Hyorim Industries Inc., 96-8, Yatab-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13517, Korea 3Department of Environmental Engineering and Institute of Energy/Environment Convergence Technologies, Kongju National University, 1223-24, Cheonan-daero, Cheonan-si 31080, Korea 4Korea Environment Institute, 370 Sicheong-daero, Sejong-si 30147, Korea
choonsoo@kongju.ac.kr
Korean Journal of Chemical Engineering, April 2021, 38(4), 756-762(7), 10.1007/s11814-020-0738-4
Download PDF
Abstract
Electrochemically reduced TiO2 nanotube arrays (r-TiO2 NTA) have emerged as an alternative that can replace the dimensionally stable anode (DSAR) due to comparable performance for chlorine evolution reaction (ClER). However, previous studies have reported applications of r-TiO2 NTA for ClER only under limited conditions (concentrated NaCl solution without other anions). Thus, the potential of r-TiO2 NTA for CIER has not yet been fully demonstrated. Therefore, this study focused on investigating ClER of r-TiO2 NTA under various parameters such chloride concentration (5-1,000mM) and the presence of other anions (i.e., SO4 2-, HPO4 2-, and CO3 2-). The results suggest that, at low chloride concentration (5-50mM NaCl), the r-TiO2 NTA exhibited higher performance for CIER (production rate of 3.35-9.82mg l-1 min-1, current efficiency of 14.43-42.04%, energy consumption of 69.24-11.02Wh g(Cl2)-1) than RuO2 (2.55-7.88mg l-1 min-1, 11.07-33.85% and 77.29-6.84Wh g(Cl2)-1, respectively). Additionally, other anions did not affect the ClER of r-TiO2 NTA more than RuO2. These can be explained by the indirect pathway of ClER in r- TiO2 NTA while the direct pathway of RuO2 was negatively affected by dilute chloride and other anions.
Keywords
References
Radjenovic J, Sedlak DL, Environ. Sci. Technol., 49, 11292 (2015)
Chaplin BP, Environ. Sci. Process. Impacts, 16, 1182 (2014)
Jeong J, Kim C, Yoon J, Water Res., 43, 895 (2009)
Hurwitz G, Pornwongthong P, Mahendra S, Hoek EMV, Chem. Eng. J., 240, 235 (2014)
Oliveira FH, Osugi ME, Paschoal FMM, Profeti D, Olivi P, Zanoni MVB, J. Appl. Electrochem., 37(5), 583 (2007)
Martinez-Huitle CA, Brillas E, Angew. Chem.-Int. Edit., 47, 1998 (2008)
Kim J, Kim C, Kim S, Yoon J, Korean Chem. Eng. Res., 53(5), 531 (2015)
Sires I, Brillas E, Oturan MA, Rodrigo MA, Panizza M, Environ. Sci. Pollut. Res., 21, 8336 (2014)
Trasatti S, Electrochim. Acta, 45(15-16), 2377 (2000)
Roy P, Berger S, Schmuki P, Angew. Chem.-Int. Edit., 50, 2904 (2011)
Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, Sol. Energy Mater. Sol. Cells, 90(14), 2011 (2006)
Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N, Appl. Phys. Lett., 82, 281 (2003)
Chen B, Hou JB, Lu K, Langmuir, 29(19), 5911 (2013)
Regonini D, Bowen CR, Jaroenworaluck A, Stevens R, Mater. Sci. Eng. R-Rep., 74, 377 (2013)
Macak JM, Gong BG, Hueppe M, Schmuki P, Adv. Mater., 19(19), 3027 (2007)
Nah YC, Paramasivam I, Schmuki P, ChemphysChem, 11, 2698 (2010)
Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmiki P, Electrochem. Commun., 8, 544 (2006)
Pang YL, Abdullah AZ, Appl. Catal. B: Environ., 129, 473 (2013)
Park JH, Kim S, Bard AJ, Nano Lett., 6, 24 (2006)
Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y, Nano Lett., 12, 1690 (2012)
Hong SP, Kim SH, Kim NY, Yoon JY, Kim CS, Korean J. Chem. Eng., 36(11), 1753 (2019)
Wu H, Li DD, Zhu XF, Yang CY, Liu DF, Chen XY, Song Y, Lu LF, Electrochim. Acta, 116, 129 (2014)
Kim C, Kim S, Choi J, Lee J, Kang JS, Sung YE, Lee J, Choi W, Yoon J, Electrochim. Acta, 141, 113 (2014)
Kim C, Kim S, Lee J, Kim J, Yoon J, ACS Appl. Mater. Interfaces, 7, 7486 (2015)
Kim C, Kim S, Hong SP, Lee J, Yoon J, Phys. Chem. Chem. Phys., 18, 14370 (2016)
Kim C, Lee S, Kim S, Yoon J, Electrochim. Acta, 222, 1578 (2016)
Kim S, Kim C, Lee J, Kim S, Lee J, Kim J, Yoon J, ACS Sustain. Chem. Eng., 6, 1620 (2018)
Kim JY, Kim CS, KiM SH, Yoon JY, J. Ind. Eng. Chem., 66, 478 (2018)
Ahmadi A, Wu T, Environ. Sci. Water Res. Technol., 3, 534 (2017)
Zhou H, Zhang YR, J. Power Sources, 272, 866 (2014)
Kim J, Lee C, Yoon J, Ind. Eng. Chem. Res., 57(33), 11465 (2018)
Kapałka A, Foti G, Comninellis C, Electrochem. Commun., 10, 607 (2008)
Jing Y, Chaplin BP, Environ. Sci. Technol., 51, 2355 (2017)
Barrera-Diaz C, Canizares P, Fernandez FJ, Natividad R, Rodrigo MA, J. Mex. Chem. Soc., 58, 256 (2014)
Chaplin BP, Environ. Sci. Process. Impacts, 16, 1182 (2014)
Jeong J, Kim C, Yoon J, Water Res., 43, 895 (2009)
Hurwitz G, Pornwongthong P, Mahendra S, Hoek EMV, Chem. Eng. J., 240, 235 (2014)
Oliveira FH, Osugi ME, Paschoal FMM, Profeti D, Olivi P, Zanoni MVB, J. Appl. Electrochem., 37(5), 583 (2007)
Martinez-Huitle CA, Brillas E, Angew. Chem.-Int. Edit., 47, 1998 (2008)
Kim J, Kim C, Kim S, Yoon J, Korean Chem. Eng. Res., 53(5), 531 (2015)
Sires I, Brillas E, Oturan MA, Rodrigo MA, Panizza M, Environ. Sci. Pollut. Res., 21, 8336 (2014)
Trasatti S, Electrochim. Acta, 45(15-16), 2377 (2000)
Roy P, Berger S, Schmuki P, Angew. Chem.-Int. Edit., 50, 2904 (2011)
Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, Sol. Energy Mater. Sol. Cells, 90(14), 2011 (2006)
Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N, Appl. Phys. Lett., 82, 281 (2003)
Chen B, Hou JB, Lu K, Langmuir, 29(19), 5911 (2013)
Regonini D, Bowen CR, Jaroenworaluck A, Stevens R, Mater. Sci. Eng. R-Rep., 74, 377 (2013)
Macak JM, Gong BG, Hueppe M, Schmuki P, Adv. Mater., 19(19), 3027 (2007)
Nah YC, Paramasivam I, Schmuki P, ChemphysChem, 11, 2698 (2010)
Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmiki P, Electrochem. Commun., 8, 544 (2006)
Pang YL, Abdullah AZ, Appl. Catal. B: Environ., 129, 473 (2013)
Park JH, Kim S, Bard AJ, Nano Lett., 6, 24 (2006)
Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y, Nano Lett., 12, 1690 (2012)
Hong SP, Kim SH, Kim NY, Yoon JY, Kim CS, Korean J. Chem. Eng., 36(11), 1753 (2019)
Wu H, Li DD, Zhu XF, Yang CY, Liu DF, Chen XY, Song Y, Lu LF, Electrochim. Acta, 116, 129 (2014)
Kim C, Kim S, Choi J, Lee J, Kang JS, Sung YE, Lee J, Choi W, Yoon J, Electrochim. Acta, 141, 113 (2014)
Kim C, Kim S, Lee J, Kim J, Yoon J, ACS Appl. Mater. Interfaces, 7, 7486 (2015)
Kim C, Kim S, Hong SP, Lee J, Yoon J, Phys. Chem. Chem. Phys., 18, 14370 (2016)
Kim C, Lee S, Kim S, Yoon J, Electrochim. Acta, 222, 1578 (2016)
Kim S, Kim C, Lee J, Kim S, Lee J, Kim J, Yoon J, ACS Sustain. Chem. Eng., 6, 1620 (2018)
Kim JY, Kim CS, KiM SH, Yoon JY, J. Ind. Eng. Chem., 66, 478 (2018)
Ahmadi A, Wu T, Environ. Sci. Water Res. Technol., 3, 534 (2017)
Zhou H, Zhang YR, J. Power Sources, 272, 866 (2014)
Kim J, Lee C, Yoon J, Ind. Eng. Chem. Res., 57(33), 11465 (2018)
Kapałka A, Foti G, Comninellis C, Electrochem. Commun., 10, 607 (2008)
Jing Y, Chaplin BP, Environ. Sci. Technol., 51, 2355 (2017)
Barrera-Diaz C, Canizares P, Fernandez FJ, Natividad R, Rodrigo MA, J. Mex. Chem. Soc., 58, 256 (2014)